• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Sách toán
  • Đề thi
  • Ôn thi THPT Quốc gia Môn Toán
  • Trắc nghiệm toán 12
  • Máy tính

Đề bài: Cho $a+b+c\neq 0$,hãy chứng minh:$1/a^{3}+ b^{3} + c^{3} =3abc+\left (  a+b+c  \right )\left (  a^{2}+ b^{2} + c^{2} -ab-bc-ca \right )$ $2/\frac{ a^{3}+ b^{3} + c^{3} -3abc}{  a+b+c }\geq 0$ 

Đăng ngày: 11/07/2021 Biên tập: admin Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức cơ bản

Đề bài: Cho $a+b+c\neq 0$,hãy chứng minh:$1/a^{3}+ b^{3} + c^{3} =3abc+\left ( 
a+b+c  \right )\left ( 
a^{2}+ b^{2} + c^{2} -ab-bc-ca \right )$ $2/\frac{
a^{3}+ b^{3} + c^{3} -3abc}{
 a+b+c }\geq 0$ 

Bat dang thuc

Lời giải

$1/$Ta có:
$a^{3}+  b^{3}=
\left ( a+b \right )^{3}-3ab
\left ( a+b \right )$
$\Rightarrow 
a^{3}+  b^{3} +  c^{3} -3abc=
\left ( a+b \right )^{3} + c^{3} 
-3ab \left ( a+b+c \right ) $ 
$=
\left ( a+b+c \right ) [
\left ( a+b \right )^{2}-
 \left ( a+b \right )c+ 
c^{2}-3ab ] $ 
$=
\left ( a+b+c \right )  \left (    a^{2} +
 b^{2} + c^{2}  -ab-bc-ca\right )$ 
$\Rightarrow 
a^{3}+  b^{3} +  c^{3} =
3abc+ \left ( a+b +c\right ) 
\left (    a^{2} +  b^{2} + c^{2}  -ab-bc-ca\right ) $ 
$2/$Theo chứng minh $1/$, ta có:
$ \frac{
a^{3}+  b^{3} +  c^{3} -3abc}{a+b+c}=
a^{2} +  b^{2} + c^{2}  -ab-bc-ca $
$=\frac{1}{2}[
\left ( a-b \right )^{2}+
\left ( b-c \right )^{2 }
+ \left ( c-a \right )^{2} ]\geq 0  $ 
(Chú ý: vì $
a^{2}+  b^{2} +  c^{2} \geq ab+bc+ca$, nên: $\frac{
a^{3}+  b^{3} +  c^{3} -3abc }{a+b+c}\geq 0$
 

=========
Chuyên mục: Bất đẳng thức cơ bản

Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức cơ bản

Bài liên quan:

  1. Đề bài: Cho $3$ số dương $a, b, c$ thỏa $abc = 1$. Chứng minh rằng:  $ a + b + c \ge 3 $ bằng phương pháp phản chứng.
  2. Đề bài: Cho \(a\geq b\geq c>0\). Chứng minh rằng: \(\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\geq \frac{a}{b}+\frac{b}{c}+\frac{c}{a}\).
  3. Đề bài: $1) $Chứng minh: $\forall a,\,b\, > 0;\,a,b \ne 1$ ta có $\left| {{{\log }_a}b + {{\log }_b}a} \right| \ge 2$$2)$Chứng minh:$\frac{1}{{{{\log }_2}\pi }} + \frac{1}{{{{\log }_{\frac{9}{2}}}\pi }} < 2$
  4. Đề bài: Chứng minh rằng ta luôn luôn có:   $ a^2 + b^2 + c^2 \ge ab + bc + ca $ với mọi số thực $a, b, c$.
  5. Đề bài: Chứng minh rằng: \(a^{3}+2\geq a^{2}+2\sqrt{a}\) với \(a\geq 0\)   (1)
  6. Đề bài: Cho $a, b>0$. Chứng minh:a) $\frac{a}{b}+\frac{b}{a}\geq 2           (1)$ Dấu = chỉ xảy ra khi $a=b$.b) $\frac{1}{a}+\frac{1}{b}\geq \frac{4}{a+b}      (2)$ Dấu = chỉ xảy ra khi $a=b$.
  7. Đề bài: Chứng minh rằng  $ \frac{a^6 + b^9}{4} \ge 3a^2b^3 – 16;     b \ge 0 $
  8. Đề bài: Cho \(x,y \) dương . Chứng minh: \(\frac{1}{(1+x)^{2}}+\frac{1}{(1+y)^{2}}\geq \frac{1}{1+xy}\)
  9. Đề bài: Chứng minh rằng:   $\sin \frac{5\pi}{12}+\sin \frac{\pi}{12}>1$
  10. Đề bài: Chứng minh rằng với mọi số thực $a,b$ ta có:  $|a\pm b|\geq |a|-|b|$
  11. Đề bài: Cho $a \le 6,b \le  – 8,c \le 3$. Chứng minh rằng với mọi $x \ge 1$ ta đều đó $x^4-ax^2-bx\geq c$
  12. Đề bài: Cho ba số dương $a,b,c$. Chứng minh rằng:   $\frac{a+b}{c}+\frac{b+c}{a}+\frac{a+c}{b}\geq 6$
  13. Đề bài: Chứng minh rằng: Nếu $0
  14. Đề bài: Chứng minh rằng nếu  $08$
  15. Đề bài: Cho $ a,b,c>0$. Chứng minh a) Nếu $a>b$ thì $\frac{a}{b}>\frac{a+c}{b+c} $                          b) Nếu $ a

Reader Interactions

Trả lời Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC




Booktoan.com (2015 - 2022) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
THÔNG TIN:
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.