• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán
Bạn đang ở:Trang chủ / Bất đẳng thức - Bài tập tự luận / Đề bài: Chứng minh rằng: Nếu $0

Đề bài: Chứng minh rằng: Nếu $0

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức cơ bản

Đề bài: Chứng minh rằng: Nếu $0

Bat dang thuc

Lời giải

Ta có:
+$0+$(\sqrt{a}-\sqrt{b})^2>0\Rightarrow a+b>2\sqrt{ab}\Rightarrow \frac{1}{a+b}$\Rightarrow \frac{2ab}{a+b}+Ta lại có: $a+b>2\sqrt{ab}\Rightarrow \sqrt{ab}Từ (2), (3), (4) suy ra (1)

=========
Chuyên mục: Bất đẳng thức cơ bản

Bài liên quan:

  1. Đề bài: Chứng minh bất đẳng thức:a) $|x-1|+|5-x| \geq  4                                              b)|x-1|-|x+6| \leq  7 $c)$|x-y|+|y-z|+|z-t|\geq  |x-t|                                            d) |x+5|+|x-2|+|x-3|\geq  8$
  2. Đề bài: Cho \(x,y \) dương . Chứng minh: \(\frac{1}{(1+x)^{2}}+\frac{1}{(1+y)^{2}}\geq \frac{1}{1+xy}\)
  3. Đề bài: Cho $a \le 6,b \le  – 8,c \le 3$. Chứng minh rằng với mọi $x \ge 1$ ta đều đó $x^4-ax^2-bx\geq c$
  4. Đề bài: Chứng minh rằng nếu  $08$
  5. Đề bài: Cho $a \ge 1,b \ge 1$. Chứng minh $\sqrt {{{\log }_2}a}  + \sqrt {{{\log }_2}b}  \ge 2\sqrt {{{\log }_2}\left( {\frac{{a + b}}{2}} \right)} $
  6. Đề bài: Các số $a,b,c,d$ theo thứ tự lập thành một cấp số cộng. Chứng minh rằng nếu lấy số $m$ sao cho $2m \ge|ad-bc|$, thì ta có với mọi $x$:  $(x-a)(x-b)(x-c)(x-d)+ {m^2} \ge 0$
  7. Đề bài: Chứng minh rằng với 3 số dương $a,b,c$ bất kì, ta luôn có: $\frac{{{a^3}}}{{{a^2} + ab + {b^2}}} + \frac{{{b^3}}}{{{b^2} + bc + {c^2}}} + \frac{{{c^3}}}{{{c^2} + ca + {a^2}}} \ge \frac{{a + b + c}}{3}$
  8. Đề bài: Giả sử $a,b,\alpha  > 0$Nếu $\frac{a}{b} < 1,$ chứng minh $\frac{a}{b} < \frac{{a + \alpha }}{{b + \alpha }}$         (1)Nếu $\frac{a}{b} > 1$, chứng minh $\frac{a}{b} > \frac{{a + \alpha }}{{b + \alpha }}$        (2)
  9. Đề bài: Chứng minh:a) nếu $x\geq y \geq  0 $ thì $\frac{x}{1+x}\geq\frac{y}{1+y}$b)$\frac{|a-b|}{1+|a-b|}\leq \frac{|a|}{1+|a|}+\frac{|b|}{1+|b|} $ với mọi $a,b$
  10. Đề bài: $1$. Giải bất phương trình: ${3^{x + 1}} – {2^{2x + 1}} – {12^{\frac{x}{2}}} < 0$$2$. Cho $a, b, c$ là ba số thực bất kỳ thỏa mãn $a + b + c = 3$. Chứng minh rằng: ${a^4} + {b^4} + {c^4} \ge {a^3} + {b^3} + {c^3}$
  11. Đề bài: Chứng minh bất đẳng thứca) $a>b>0 \Rightarrow  a^{2}> b^{2}                                  b)a>b\geq  0 \Rightarrow  \sqrt{a} > \sqrt{b}$c) $b,d >0; \frac{a}{b}< \frac{c}{d} \Rightarrow  \frac{a}{b}<\frac{a+c}{b+d}\leq \frac{c}{d}              d) m>n \Rightarrow  \sqrt[3]{m}> \sqrt[3]{n}  $
  12. Đề bài: Chứng minh rằng: \(a^{3}+2\geq a^{2}+2\sqrt{a}\) với \(a\geq 0\)   (1)
  13. Đề bài: Cho $a+b+c\neq 0$,hãy chứng minh:$1/a^{3}+ b^{3} + c^{3} =3abc+\left (  a+b+c  \right )\left (  a^{2}+ b^{2} + c^{2} -ab-bc-ca \right )$ $2/\frac{ a^{3}+ b^{3} + c^{3} -3abc}{  a+b+c }\geq 0$ 
  14. Đề bài: Cho $a+b=2$.Hãy chứng minh:$1/ a^{2}+ b^{2} \geq 2$   $2/ a^{4}+ b^{4} \geq 2$ 
  15. Đề bài: Chứng minh với mọi $x,y,z$:a) $|x+y+z|\leq|x|+|y|+|z|                     b)|x-z|\leq |x-y|+|y-z|$

Reader Interactions

Để lại một bình luận Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.