adsense
Đề bài: Cho $ a,b,c>0$. Chứng minh a) Nếu $a>b$ thì $\frac{a}{b}>\frac{a+c}{b+c} $ b) Nếu $ a
Lời giải
adsense
a) Lập hiệu: $\frac{a}{b}-\frac{a+c}{b+c}=\frac{a\left ( b+c \right )-b\left ( a+c \right )}{b\left ( b+c \right )}=\frac{c\left ( a-b \right )}{b\left ( b+c \right )} $ vì $a,b,c>0; a>b$ nên $\frac{c\left ( a-b \right )}{b\left ( b+c \right )}>0$ điều phải chứng minh
b) Chứng minh tương tự
=========
Chuyên mục: Bất đẳng thức cơ bản
Trả lời