• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Toán 12
  • Toán 11
  • Toán 10
  • Trắc nghiệm
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán

Bất đẳng thức - Bài tập tự luận

Đề bài: Cho tam giác $ABC$ có các cạnh $a, b, c.$Chứng minh $a^2 + b^2 + c^2 < 2(ab + bc + ca)$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức trong tam giác

Đề bài: Cho tam giác $ABC$ có các cạnh $a, b, c.$Chứng minh $a^2 + b^2 + c^2 < 2(ab + bc + ca)$ Lời giải Đề bài: Cho tam giác $ABC$ có các cạnh $a, b, c.$Chứng minh $a^2 + b^2 + c^2 < 2(ab + bc + ca)$ Lời giải Do $a,b,c$ là $3$ cạnh tam giác nên $|a-b|$\Rightarrow  (a-b)^2Tương tự ta có : … [Đọc thêm...] vềĐề bài: Cho tam giác $ABC$ có các cạnh $a, b, c.$Chứng minh $a^2 + b^2 + c^2 < 2(ab + bc + ca)$

Đề bài: Cho tam giác $ABC$ có các góc $A, B, C$ thỏa mãn hệ thức \({\sin ^2}B + {\sin ^2}C = 2{\sin ^2}A\)Chứng minh rằng \(A \le {60^{0}}\)

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức trong tam giác

Đề bài: Cho tam giác $ABC$ có các góc $A, B, C$ thỏa mãn hệ thức \({\sin ^2}B + {\sin ^2}C = 2{\sin ^2}A\)Chứng minh rằng \(A \le {60^{0}}\) Lời giải Đề bài: Cho tam giác $ABC$ có các góc $A, B, C$ thỏa mãn hệ thức \({\sin ^2}B + {\sin ^2}C = 2{\sin ^2}A\)Chứng minh rằng \(A \le {60^{0}}\) Lời giải … [Đọc thêm...] vềĐề bài: Cho tam giác $ABC$ có các góc $A, B, C$ thỏa mãn hệ thức \({\sin ^2}B + {\sin ^2}C = 2{\sin ^2}A\)Chứng minh rằng \(A \le {60^{0}}\)

Đề bài: Cho các số $a,b,c$ thoả mãn $0

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức lượng giác

Đề bài: Cho các số $a,b,c$ thoả mãn $0 Lời giải Đề bài: Cho các số $a,b,c$ thoả mãn $0 Lời giải Từ giả thiết ta biến đổi bất đẳng thức về dạng:    $\sqrt{\frac{a-c}{a}.\frac{c}{b}}+\sqrt{\frac{b-c}{b}.\frac{c}{a}}\leq 1 \Leftrightarrow … [Đọc thêm...] vềĐề bài: Cho các số $a,b,c$ thoả mãn $0

Đề bài:  Biết rằng:  $3x^2+4xy+3y^2=14.$ Chứng minh $\frac{14}{5} \leq x^2+y^2 \leq 14$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức cơ bản

Đề bài:  Biết rằng:  $3x^2+4xy+3y^2=14.$ Chứng minh $\frac{14}{5} \leq x^2+y^2 \leq 14$ Lời giải Đặt $Q=x^2+y^2$$\bullet$ Để ý: $14-Q=2(x+y)^2 \geq 0 \Leftrightarrow Q \leq 14$.Dấu đẳng thức có khi và chỉ khi:$\left\{ \begin{array}{l} x+y=0\\ 3x^2+4xy+3y^2=14 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x=-y\\ x^2=7 \end{array} \right. … [Đọc thêm...] vềĐề bài:  Biết rằng:  $3x^2+4xy+3y^2=14.$ Chứng minh $\frac{14}{5} \leq x^2+y^2 \leq 14$

Đề bài: Các số $a,b,c,d$ theo thứ tự lập thành một cấp số cộng. Chứng minh rằng nếu lấy số $m$ sao cho $2m \ge|ad-bc|$, thì ta có với mọi $x$:  $(x-a)(x-b)(x-c)(x-d)+ {m^2} \ge 0$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức cơ bản

Đề bài: Các số $a,b,c,d$ theo thứ tự lập thành một cấp số cộng. Chứng minh rằng nếu lấy số $m$ sao cho $2m \ge|ad-bc|$, thì ta có với mọi $x$:  $(x-a)(x-b)(x-c)(x-d)+ {m^2} \ge 0$ Lời giải Gọi $k > 0$ là cộng sai của cấp số cộng, ta có $b = a + k,c = a + 2k,d = a + 3k$ và điều kiện $2m \ge \left| {a{\rm{d  -  bc}}} \right| = \left| {a\left( {a + 3k} \right) - … [Đọc thêm...] vềĐề bài: Các số $a,b,c,d$ theo thứ tự lập thành một cấp số cộng. Chứng minh rằng nếu lấy số $m$ sao cho $2m \ge|ad-bc|$, thì ta có với mọi $x$:  $(x-a)(x-b)(x-c)(x-d)+ {m^2} \ge 0$

Đề bài: Cho $a,b,c \geq 1.$Hãy chứng minh:$1/\frac{1}{1+a^{2}}+\frac{1}{1+b^{2}}\geq \frac{2}{1+ab}$$2/\frac{1}{1+a^{3}}+\frac{1}{1+b^{3}}+\frac{1}{1+c^{3}}\geq \frac{3}{1+abc} $(Đây là dạng bất đẳng thức JenSen)

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức cơ bản

Đề bài: Cho $a,b,c \geq 1.$Hãy chứng minh:$1/\frac{1}{1+a^{2}}+\frac{1}{1+b^{2}}\geq \frac{2}{1+ab}$$2/\frac{1}{1+a^{3}}+\frac{1}{1+b^{3}}+\frac{1}{1+c^{3}}\geq \frac{3}{1+abc} $(Đây là dạng bất đẳng thức JenSen) Lời giải $1/$ Bài toán $\Leftrightarrow \left ( 2+a^{2}+b^{2} \right )\left ( 1+ab \right )\geq 2\left ( 1+a^{2} \right )\left ( 1+b^{2} \right … [Đọc thêm...] vềĐề bài: Cho $a,b,c \geq 1.$Hãy chứng minh:$1/\frac{1}{1+a^{2}}+\frac{1}{1+b^{2}}\geq \frac{2}{1+ab}$$2/\frac{1}{1+a^{3}}+\frac{1}{1+b^{3}}+\frac{1}{1+c^{3}}\geq \frac{3}{1+abc} $(Đây là dạng bất đẳng thức JenSen)

Đề bài: Cho $a,b,c$  dương thay đổi. Chứng minh:     $\left ( \frac{a}{b}  \right )^ \frac{3}{2}+\left ( \frac{b}{c}  \right )^ \frac{3}{2} +\left ( \frac{c}{a}  \right )^ \frac{3}{2} \geq  \frac{a}{b}+\frac{b}{c}+\frac{c}{a}   $

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức Côsi

Đề bài: Cho $a,b,c$  dương thay đổi. Chứng minh:     $\left ( \frac{a}{b}  \right )^ \frac{3}{2}+\left ( \frac{b}{c}  \right )^ \frac{3}{2} +\left ( \frac{c}{a}  \right )^ \frac{3}{2} \geq  \frac{a}{b}+\frac{b}{c}+\frac{c}{a}   $ Lời giải Đề bài: Cho $a,b,c$  dương thay đổi. Chứng minh:     $\left ( \frac{a}{b}  \right )^ \frac{3}{2}+\left ( \frac{b}{c}  … [Đọc thêm...] vềĐề bài: Cho $a,b,c$  dương thay đổi. Chứng minh:     $\left ( \frac{a}{b}  \right )^ \frac{3}{2}+\left ( \frac{b}{c}  \right )^ \frac{3}{2} +\left ( \frac{c}{a}  \right )^ \frac{3}{2} \geq  \frac{a}{b}+\frac{b}{c}+\frac{c}{a}   $

Đề bài: Cho \(2\) số dương \(a\) và \(b\). Chứng minh rằng:  \(\frac{a}{b}+\frac{b}{a}\geq 2\)

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức Côsi

Đề bài: Cho \(2\) số dương \(a\) và \(b\). Chứng minh rằng:  \(\frac{a}{b}+\frac{b}{a}\geq 2\) Lời giải Đề bài: Cho \(2\) số dương \(a\) và \(b\). Chứng minh rằng:  \(\frac{a}{b}+\frac{b}{a}\geq 2\) Lời giải Áp dụng bất đẳng thức Cauchy cho \(2\) số dương \(\frac{a}{b}\) và \(\frac{b}{a}\) ta … [Đọc thêm...] vềĐề bài: Cho \(2\) số dương \(a\) và \(b\). Chứng minh rằng:  \(\frac{a}{b}+\frac{b}{a}\geq 2\)

Đề bài: Cho hình lăng trụ đứng $ABC,A'B'C'$ biết $A(a;0;0), B(-a;0;0), C(0;1;0), B'(-a;0;b)$ với $a,b>0$a) Tính khoảng cách $d$ của hai đường thẳng $B'C$ và $AC'$b) Cho $a, b$ thay đổi mà $a+b=4$. Tìm $a,b$ để $d$ đạt giá trị lớn nhất

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức Côsi

Đề bài: Cho hình lăng trụ đứng $ABC,A'B'C'$ biết $A(a;0;0), B(-a;0;0), C(0;1;0), B'(-a;0;b)$ với $a,b>0$a) Tính khoảng cách $d$ của hai đường thẳng $B'C$ và $AC'$b) Cho $a, b$ thay đổi mà $a+b=4$. Tìm $a,b$ để $d$ đạt giá trị lớn nhất Lời giải Đề bài: Cho hình lăng trụ đứng $ABC,A'B'C'$ biết $A(a;0;0), B(-a;0;0), … [Đọc thêm...] vềĐề bài: Cho hình lăng trụ đứng $ABC,A'B'C'$ biết $A(a;0;0), B(-a;0;0), C(0;1;0), B'(-a;0;b)$ với $a,b>0$a) Tính khoảng cách $d$ của hai đường thẳng $B'C$ và $AC'$b) Cho $a, b$ thay đổi mà $a+b=4$. Tìm $a,b$ để $d$ đạt giá trị lớn nhất

Đề bài: Cho $n,m\in N$ và $   n,m\geq 1$. chứng minh rằng:   $\sin^m x.\cos^nx\leq \sqrt{\frac{m^mn^n}{(n+m)^{n+m}}}$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức Côsi

Đề bài: Cho $n,m\in N$ và $   n,m\geq 1$. chứng minh rằng:   $\sin^m x.\cos^nx\leq \sqrt{\frac{m^mn^n}{(n+m)^{n+m}}}$ Lời giải Đề bài: Cho $n,m\in N$ và $   n,m\geq 1$. chứng minh rằng:   $\sin^m x.\cos^nx\leq \sqrt{\frac{m^mn^n}{(n+m)^{n+m}}}$ Lời giải Đặt $A=VT$ của bất đẳng thức cần chứng … [Đọc thêm...] vềĐề bài: Cho $n,m\in N$ và $   n,m\geq 1$. chứng minh rằng:   $\sin^m x.\cos^nx\leq \sqrt{\frac{m^mn^n}{(n+m)^{n+m}}}$

  • « Chuyển đến Trang trước
  • Trang 1
  • Interim pages omitted …
  • Trang 33
  • Trang 34
  • Trang 35
  • Trang 36
  • Trang 37
  • Interim pages omitted …
  • Trang 43
  • Chuyển đến Trang sau »

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.