• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Toán 12
  • Toán 11
  • Toán 10
  • Trắc nghiệm
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán

Bất đẳng thức - Bài tập tự luận

Đề bài: Cho $x,y,z$ là các số thực thỏa mãn $xy+yz+zx=15$Tìm các giá trị nhỏ nhất của $Q=x^4+y^4+z^4$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức Côsi

Đề bài: Cho $x,y,z$ là các số thực thỏa mãn $xy+yz+zx=15$Tìm các giá trị nhỏ nhất của $Q=x^4+y^4+z^4$ Lời giải Đề bài: Cho $x,y,z$ là các số thực thỏa mãn $xy+yz+zx=15$Tìm các giá trị nhỏ nhất của $Q=x^4+y^4+z^4$ Lời giải Theo Cô-si:  $x^4+y^4+25+25 \geq 4\sqrt[4]{x^4y^425.25}=4.5|xy| \geq … [Đọc thêm...] vềĐề bài: Cho $x,y,z$ là các số thực thỏa mãn $xy+yz+zx=15$Tìm các giá trị nhỏ nhất của $Q=x^4+y^4+z^4$

Đề bài: Cho \(2\) số dương \(a\) và \(b\). Chứng minh rằng:  \((a+b)(ab+1)\geq 4ab\)

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức Côsi

Đề bài: Cho \(2\) số dương \(a\) và \(b\). Chứng minh rằng:  \((a+b)(ab+1)\geq 4ab\) Lời giải Đề bài: Cho \(2\) số dương \(a\) và \(b\). Chứng minh rằng:  \((a+b)(ab+1)\geq 4ab\) Lời giải Áp dụng bất đẳng thức Cauchy cho \(2\) số dương \(a,b\) và \(ab,1\). Ta có:\(a+b\geq 2\sqrt{ab}\)\(ab+1\geq … [Đọc thêm...] vềĐề bài: Cho \(2\) số dương \(a\) và \(b\). Chứng minh rằng:  \((a+b)(ab+1)\geq 4ab\)

Đề bài: Cho $A(1;0;0), B(1;1;0), C(0;1;0), D(0;0;m)$ với $m$ là tham số khác )a) Tính khoảng cách giữa $AC$ và $BD$ khi $m=2$b) Gọi $H$ là hình chiếu vuông góc của $O$ trên $BD$. Tìm các giá trị của tham số $m$ để diện tích $\Delta OBH$ đạt giá trị lớn nhất

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức Côsi

Đề bài: Cho $A(1;0;0), B(1;1;0), C(0;1;0), D(0;0;m)$ với $m$ là tham số khác )a) Tính khoảng cách giữa $AC$ và $BD$ khi $m=2$b) Gọi $H$ là hình chiếu vuông góc của $O$ trên $BD$. Tìm các giá trị của tham số $m$ để diện tích $\Delta OBH$ đạt giá trị lớn nhất Lời giải Đề bài: Cho $A(1;0;0), B(1;1;0), C(0;1;0), D(0;0;m)$ với $m$ là tham số khác )a) Tính khoảng … [Đọc thêm...] vềĐề bài: Cho $A(1;0;0), B(1;1;0), C(0;1;0), D(0;0;m)$ với $m$ là tham số khác )a) Tính khoảng cách giữa $AC$ và $BD$ khi $m=2$b) Gọi $H$ là hình chiếu vuông góc của $O$ trên $BD$. Tìm các giá trị của tham số $m$ để diện tích $\Delta OBH$ đạt giá trị lớn nhất

Đề bài: Chứng minh rằng nếu m,n,p nguyên dương thì :$m^{\frac{m}{m+n+p}}.n^{\frac{n}{m+n+p}}.p^{\frac{p}{m+n+p}}\geq \frac{1}{3}(m+n+p)$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức Côsi

Đề bài: Chứng minh rằng nếu m,n,p nguyên dương thì :$m^{\frac{m}{m+n+p}}.n^{\frac{n}{m+n+p}}.p^{\frac{p}{m+n+p}}\geq \frac{1}{3}(m+n+p)$ Lời giải Đề bài: Chứng minh rằng nếu m,n,p nguyên dương thì :$m^{\frac{m}{m+n+p}}.n^{\frac{n}{m+n+p}}.p^{\frac{p}{m+n+p}}\geq \frac{1}{3}(m+n+p)$ Lời giải Ta … [Đọc thêm...] vềĐề bài: Chứng minh rằng nếu m,n,p nguyên dương thì :$m^{\frac{m}{m+n+p}}.n^{\frac{n}{m+n+p}}.p^{\frac{p}{m+n+p}}\geq \frac{1}{3}(m+n+p)$

Đề bài: Cho ba số dương $a,b,c$. Chứng minh rằng:      $\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\geq \frac{3}{2}$.

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức Côsi

Đề bài: Cho ba số dương $a,b,c$. Chứng minh rằng:      $\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\geq \frac{3}{2}$. Lời giải Đề bài: Cho ba số dương $a,b,c$. Chứng minh rằng:      $\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\geq \frac{3}{2}$. Lời giải Cách $1$:Đặt $x=b+c, y=a+c, z=a+b;    … [Đọc thêm...] vềĐề bài: Cho ba số dương $a,b,c$. Chứng minh rằng:      $\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\geq \frac{3}{2}$.

Đề bài: Cho $a,b,c>0$.Hãy chứng minh:$a^{3}+b^{3}+c^{3} \geq a^{2}\sqrt{bc}+b^{2}\sqrt{ca}+c^{2}\sqrt{ab}$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức Côsi

Đề bài: Cho $a,b,c>0$.Hãy chứng minh:$a^{3}+b^{3}+c^{3} \geq a^{2}\sqrt{bc}+b^{2}\sqrt{ca}+c^{2}\sqrt{ab}$ Lời giải Đề bài: Cho $a,b,c>0$.Hãy chứng minh:$a^{3}+b^{3}+c^{3} \geq a^{2}\sqrt{bc}+b^{2}\sqrt{ca}+c^{2}\sqrt{ab}$ Lời giải Ta có:$a^{3}+b^{3}=(a+b)(a^{2}-ab+b^{2})$$=(a+b)[ab+(a-b)^{2}] … [Đọc thêm...] vềĐề bài: Cho $a,b,c>0$.Hãy chứng minh:$a^{3}+b^{3}+c^{3} \geq a^{2}\sqrt{bc}+b^{2}\sqrt{ca}+c^{2}\sqrt{ab}$

Đề bài: Chứng minh rằng với mọi số thức không âm $a,b$ ta luôn có:    $\frac{a+b}{2}\geq \sqrt{ab}$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức Côsi

Đề bài: Chứng minh rằng với mọi số thức không âm $a,b$ ta luôn có:    $\frac{a+b}{2}\geq \sqrt{ab}$ Lời giải Đề bài: Chứng minh rằng với mọi số thức không âm $a,b$ ta luôn có:    $\frac{a+b}{2}\geq \sqrt{ab}$ Lời giải Biến đổi tương đương bất đẳng thức về dạng:$(\frac{a+b}{2})^2\geq … [Đọc thêm...] vềĐề bài: Chứng minh rằng với mọi số thức không âm $a,b$ ta luôn có:    $\frac{a+b}{2}\geq \sqrt{ab}$

Đề bài: $1.$ Giải phương trình: $\sqrt{3}\sin x+\cos x=\frac{1}{\cos x}  $$2.$ Tìm giá trị lớn nhất của hàm số:   $y=\sin x\sqrt{\cos x}+\cos x\sqrt{\sin x}  $

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức Bunhiacốpxki

Đề bài: $1.$ Giải phương trình: $\sqrt{3}\sin x+\cos x=\frac{1}{\cos x}  $$2.$ Tìm giá trị lớn nhất của hàm số:   $y=\sin x\sqrt{\cos x}+\cos x\sqrt{\sin x}  $ Lời giải Đề bài: $1.$ Giải phương trình: $\sqrt{3}\sin x+\cos x=\frac{1}{\cos x}  $$2.$ Tìm giá trị lớn nhất của hàm số:   $y=\sin x\sqrt{\cos x}+\cos x\sqrt{\sin x}  $ Lời giải … [Đọc thêm...] vềĐề bài: $1.$ Giải phương trình: $\sqrt{3}\sin x+\cos x=\frac{1}{\cos x}  $$2.$ Tìm giá trị lớn nhất của hàm số:   $y=\sin x\sqrt{\cos x}+\cos x\sqrt{\sin x}  $

Đề bài: Giải bất phương trình:              $|x|\sqrt{1-x}+|x-1|\sqrt{x}\leq 1$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức Bunhiacốpxki

Đề bài: Giải bất phương trình:              $|x|\sqrt{1-x}+|x-1|\sqrt{x}\leq 1$ Lời giải Đề bài: Giải bất phương trình:              $|x|\sqrt{1-x}+|x-1|\sqrt{x}\leq 1$ Lời giải Điều kiện $\begin{cases}x\geq 0\\ 1-x\geq 0 \end{cases}\Leftrightarrow 0 \leq … [Đọc thêm...] vềĐề bài: Giải bất phương trình:              $|x|\sqrt{1-x}+|x-1|\sqrt{x}\leq 1$

Đề bài: Cho $n \in Z,n \geq 1; a,b,c>0$.Chứng minh rằng:$\frac{a^{n}}{b+c}+\frac{b^{n}}{c+a}+\frac{c^{n}}{a+b} \geq \frac{3}{2}(\frac{a+b+c}{3})^{n-1}$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức Bunhiacốpxki

Đề bài: Cho $n \in Z,n \geq 1; a,b,c>0$.Chứng minh rằng:$\frac{a^{n}}{b+c}+\frac{b^{n}}{c+a}+\frac{c^{n}}{a+b} \geq \frac{3}{2}(\frac{a+b+c}{3})^{n-1}$ Lời giải Đề bài: Cho $n \in Z,n \geq 1; a,b,c>0$.Chứng minh rằng:$\frac{a^{n}}{b+c}+\frac{b^{n}}{c+a}+\frac{c^{n}}{a+b} \geq \frac{3}{2}(\frac{a+b+c}{3})^{n-1}$ Lời giải … [Đọc thêm...] vềĐề bài: Cho $n \in Z,n \geq 1; a,b,c>0$.Chứng minh rằng:$\frac{a^{n}}{b+c}+\frac{b^{n}}{c+a}+\frac{c^{n}}{a+b} \geq \frac{3}{2}(\frac{a+b+c}{3})^{n-1}$

  • « Chuyển đến Trang trước
  • Trang 1
  • Interim pages omitted …
  • Trang 32
  • Trang 33
  • Trang 34
  • Trang 35
  • Trang 36
  • Interim pages omitted …
  • Trang 43
  • Chuyển đến Trang sau »

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.