• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Toán 12
  • Toán 11
  • Toán 10
  • Trắc nghiệm
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán

Bất đẳng thức - Bài tập tự luận

Đề bài:  Chứng minh rằng $\sin20^0>\frac{1}{3}$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Ứng dụng hàm số để chứng minh Bất đẳng thức

Đề bài:  Chứng minh rằng $\sin20^0>\frac{1}{3}$ Lời giải Đề bài:  Chứng minh rằng $\sin20^0>\frac{1}{3}$ Lời giải Ta có $\sin 60^0=3\sin 20^0-4\sin^320^0$, do đó $\sin 20^0$ là nghiệm của phương trình:   $\frac{\sqrt{3}}{2}=3x-4x^3$.Xét hàm số $f(x)=3x-4x^3$.Đạo hàm:  $f^'(x)=3-12x^2$.Bảng biến … [Đọc thêm...] vềĐề bài:  Chứng minh rằng $\sin20^0>\frac{1}{3}$

Đề bài: Chứng minh rằng $\sqrt{t}>\ln \sqrt{t}$ với $t>0$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Ứng dụng hàm số để chứng minh Bất đẳng thức

Đề bài: Chứng minh rằng $\sqrt{t}>\ln \sqrt{t}$ với $t>0$ Lời giải Đề bài: Chứng minh rằng $\sqrt{t}>\ln \sqrt{t}$ với $t>0$ Lời giải Xét hàm số $g(t)=\sqrt{t }-\ln t$ trên khoảng $(0;+\infty  )$Ta có $g'(t)=\frac{1}{2\sqrt{ t} }-\frac{1}{t}=\frac{\sqrt{ t}-2 }{2t}$Lập bảng biến thiên ta … [Đọc thêm...] vềĐề bài: Chứng minh rằng $\sqrt{t}>\ln \sqrt{t}$ với $t>0$

Đề bài: Cho $ x>y>0$. Chứng minh rằng : $ (x-y)[2-(x+y)]

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Các dạng bất đẳng thức khác

Đề bài: Cho $ x>y>0$. Chứng minh rằng : $ (x-y)[2-(x+y)] Lời giải Đề bài: Cho $ x>y>0$. Chứng minh rằng : $ (x-y)[2-(x+y)] Lời giải $ \forall t\geq 0 $, ta có : $\frac{1}{1+t} \geq 1 -t $     Dấu $"=" \Leftrightarrow  t=0$$\Rightarrow \int\limits_{y}^{x} \frac{dt}{1+t} > \int\limits_{y}^{x} … [Đọc thêm...] vềĐề bài: Cho $ x>y>0$. Chứng minh rằng : $ (x-y)[2-(x+y)]

Đề bài: Cho ba số dương $x,y,z$ biết: $2x^2+3y^2-2z^3=0$Chứng minh rằng $z$ là số lớn nhất trong ba số đã cho.

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Các dạng bất đẳng thức khác

Đề bài: Cho ba số dương $x,y,z$ biết: $2x^2+3y^2-2z^3=0$Chứng minh rằng $z$ là số lớn nhất trong ba số đã cho. Lời giải Đề bài: Cho ba số dương $x,y,z$ biết: $2x^2+3y^2-2z^3=0$Chứng minh rằng $z$ là số lớn nhất trong ba số đã cho. Lời giải Ta có:  $2x^2+3y^2-2z^2=0  \Leftrightarrow  … [Đọc thêm...] vềĐề bài: Cho ba số dương $x,y,z$ biết: $2x^2+3y^2-2z^3=0$Chứng minh rằng $z$ là số lớn nhất trong ba số đã cho.

Đề bài: Cho hàm số $f$ có đạo hàm liên tục trên $[a,b]$ và $f(a)=0$Chứng minh rằng: $[\mathop {Max|f(x)|}\limits_{x\in [a,b]} ]^{2}\leq (b-a)\int\limits^{b}_{a}[f(x)]^{2}dx$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Các dạng bất đẳng thức khác

Đề bài: Cho hàm số $f$ có đạo hàm liên tục trên $[a,b]$ và $f(a)=0$Chứng minh rằng: $[\mathop {Max|f(x)|}\limits_{x\in [a,b]} ]^{2}\leq (b-a)\int\limits^{b}_{a}[f(x)]^{2}dx$ Lời giải Đề bài: Cho hàm số $f$ có đạo hàm liên tục trên $[a,b]$ và $f(a)=0$Chứng minh rằng: $[\mathop {Max|f(x)|}\limits_{x\in [a,b]} ]^{2}\leq … [Đọc thêm...] vềĐề bài: Cho hàm số $f$ có đạo hàm liên tục trên $[a,b]$ và $f(a)=0$Chứng minh rằng: $[\mathop {Max|f(x)|}\limits_{x\in [a,b]} ]^{2}\leq (b-a)\int\limits^{b}_{a}[f(x)]^{2}dx$

Đề bài: Cho $a+b+c+d=2$. Chứng minh rằng:     $a^2+b^2+c^2+d^2\geq 1$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Các dạng bất đẳng thức khác

Đề bài: Cho $a+b+c+d=2$. Chứng minh rằng:     $a^2+b^2+c^2+d^2\geq 1$ Lời giải Đề bài: Cho $a+b+c+d=2$. Chứng minh rằng:     $a^2+b^2+c^2+d^2\geq 1$ Lời giải Ta có ngay: $(a-b)^2\geq 0 \Leftrightarrow a^2+b^2\geq 2ab .  (1)$ Dấu = xảy ra$\Leftrightarrow a=b$Tương tự:             $b^2+c^2\geq … [Đọc thêm...] vềĐề bài: Cho $a+b+c+d=2$. Chứng minh rằng:     $a^2+b^2+c^2+d^2\geq 1$

Đề bài: Cho $a_{1},a_{2},…,a_{n},b_{1},b_{2},…,b_{n}\in R$.Chứng minh rằng:$\sum\limits_{i=1}^n\sqrt{a_{i}^{2}+b_{i}^{2}}\geq \sqrt{(\sum\limits_{i=1}^na_{i})^{2}+(\sum\limits_{i=1}^n b_{i})^{2}}$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Các dạng bất đẳng thức khác

Đề bài: Cho $a_{1},a_{2},...,a_{n},b_{1},b_{2},...,b_{n}\in R$.Chứng minh rằng:$\sum\limits_{i=1}^n\sqrt{a_{i}^{2}+b_{i}^{2}}\geq \sqrt{(\sum\limits_{i=1}^na_{i})^{2}+(\sum\limits_{i=1}^n b_{i})^{2}}$ Lời giải Đề bài: Cho $a_{1},a_{2},...,a_{n},b_{1},b_{2},...,b_{n}\in R$.Chứng minh rằng:$\sum\limits_{i=1}^n\sqrt{a_{i}^{2}+b_{i}^{2}}\geq … [Đọc thêm...] vềĐề bài: Cho $a_{1},a_{2},…,a_{n},b_{1},b_{2},…,b_{n}\in R$.Chứng minh rằng:$\sum\limits_{i=1}^n\sqrt{a_{i}^{2}+b_{i}^{2}}\geq \sqrt{(\sum\limits_{i=1}^na_{i})^{2}+(\sum\limits_{i=1}^n b_{i})^{2}}$

Đề bài: Chứng minh rằng với mọi số thực $a$ luôn có:   $\sqrt{a^2+a+1}+\sqrt{a^2-a+1}\geq 2 .   (1)$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Các dạng bất đẳng thức khác

Đề bài: Chứng minh rằng với mọi số thực $a$ luôn có:   $\sqrt{a^2+a+1}+\sqrt{a^2-a+1}\geq 2 .   (1)$ Lời giải Đề bài: Chứng minh rằng với mọi số thực $a$ luôn có:   $\sqrt{a^2+a+1}+\sqrt{a^2-a+1}\geq 2 .   (1)$ Lời giải Ta có nhận xét:   $\displaystyle … [Đọc thêm...] vềĐề bài: Chứng minh rằng với mọi số thực $a$ luôn có:   $\sqrt{a^2+a+1}+\sqrt{a^2-a+1}\geq 2 .   (1)$

Đề bài: Cho $0\leq x,y,z\leq 1.$Chứng minh rằng :$\left ( 2^{x}+2^{y}+2^{z} \right ).\left ( 2^{-x}+2^{-y}+2^{-z} \right )\leq \frac{81}{8}$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Các dạng bất đẳng thức khác

Đề bài: Cho $0\leq x,y,z\leq 1.$Chứng minh rằng :$\left ( 2^{x}+2^{y}+2^{z} \right ).\left ( 2^{-x}+2^{-y}+2^{-z} \right )\leq \frac{81}{8}$ Lời giải Đề bài: Cho $0\leq x,y,z\leq 1.$Chứng minh rằng :$\left ( 2^{x}+2^{y}+2^{z} \right ).\left ( 2^{-x}+2^{-y}+2^{-z} \right )\leq \frac{81}{8}$ Lời giải … [Đọc thêm...] vềĐề bài: Cho $0\leq x,y,z\leq 1.$Chứng minh rằng :$\left ( 2^{x}+2^{y}+2^{z} \right ).\left ( 2^{-x}+2^{-y}+2^{-z} \right )\leq \frac{81}{8}$

Đề bài: Cho tam giác $ABC$ thỏa mãn:                    $\frac{ 1}{a^3+b^3+abc } +\frac{1 }{ b^3+c^3+abc} +\frac{ 1}{ c^3+a^3+abc} = \frac{1 }{ abc}    (1)$. Chứng minh $\Delta ABC$ đều.

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức trong tam giác

Đề bài: Cho tam giác $ABC$ thỏa mãn:                    $\frac{ 1}{a^3+b^3+abc } +\frac{1 }{ b^3+c^3+abc} +\frac{ 1}{ c^3+a^3+abc} = \frac{1 }{ abc}    (1)$. Chứng minh $\Delta ABC$ đều. Lời giải Đề bài: Cho tam giác $ABC$ thỏa mãn:                    $\frac{ 1}{a^3+b^3+abc } +\frac{1 }{ b^3+c^3+abc} +\frac{ 1}{ c^3+a^3+abc} = \frac{1 }{ abc}    (1)$. Chứng … [Đọc thêm...] vềĐề bài: Cho tam giác $ABC$ thỏa mãn:                    $\frac{ 1}{a^3+b^3+abc } +\frac{1 }{ b^3+c^3+abc} +\frac{ 1}{ c^3+a^3+abc} = \frac{1 }{ abc}    (1)$. Chứng minh $\Delta ABC$ đều.

  • « Chuyển đến Trang trước
  • Trang 1
  • Interim pages omitted …
  • Trang 32
  • Trang 33
  • Trang 34
  • Trang 35
  • Trang 36
  • Interim pages omitted …
  • Trang 43
  • Chuyển đến Trang sau »

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.