• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Trắc nghiệm Toán 12
  • Máy tính

Đề bài: Cho hàm số $f$ có đạo hàm liên tục trên $[a,b]$ và $f(a)=0$Chứng minh rằng: $[\mathop {Max|f(x)|}\limits_{x\in [a,b]} ]^{2}\leq (b-a)\int\limits^{b}_{a}[f(x)]^{2}dx$

Đăng ngày: 11/07/2021 Biên tập: admin Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Các dạng bất đẳng thức khác

adsense
Đề bài: Cho hàm số $f$ có đạo hàm liên tục trên $[a,b]$ và $f(a)=0$Chứng minh rằng: $[\mathop {Max|f(x)|}\limits_{x\in [a,b]} ]^{2}\leq (b-a)\int\limits^{b}_{a}[f(x)]^{2}dx$

Bat dang thuc

Lời giải

Đề bài:
Cho hàm số $f$ có đạo hàm liên tục trên $[a,b]$ và $f(a)=0$Chứng minh rằng: $[\mathop {Max|f(x)|}\limits_{x\in [a,b]} ]^{2}\leq (b-a)\int\limits^{b}_{a}[f(x)]^{2}dx$
Lời giải

adsense

Ta có:
Do $f(a)=0 \Rightarrow f(x_{0})-f(a)=\int\limits^{x_{0}}_{a}f'(x)dx$
Trong đó: $f(x_{0})=max\left\{ \begin{array}{l} \end{array} \right.\left. |f(x)|/x\in [a,b] \right \}$
$\Rightarrow[f(x_{0})]^{2}=(\int\limits^{x_{0}}_{a}1-f'(x)dx)^{2}$
$\leq (\int\limits^{x_{0}}_{a}1^{2}dx)(\int\limits^{x_{0}}_{a}[f'(x)]^{2}dx)\leq (b-a)\int\limits^{x_{0}}_{a}[f'(x)]^{2}dx$
Vậy: $[\mathop {Max|f(x)|}\limits_{x\in [a,b]} ]^{2}\leq (b-a)\int\limits^{b}_{a}[f(x)]^{2}dx$

=========
Chuyên mục: Các dạng bất đẳng thức khác

Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Các dạng bất đẳng thức khác

Bài liên quan:

  1. Đề bài: Chứng minh rằng : $ \frac{2}{3} < \frac{1}{\sqrt{n^3} }\sum\limits_{k = 1}^n {\sqrt k } < \frac{2}{3}\sqrt{\left ( \frac{n+1}{n}  \right )^3 }- \frac{2}{3\sqrt{n^3} }, \forall n \in  N$
  2. Đề bài: Cho $A=2xyz-xy-yz-zx+1$.Chứng minh $A>0$ với mọi $x,y,z$ lớn hơn $1$
  3. Đề bài: Cho $f:[0,1] \to [-1,1]$ liên tục.Chứng minh rằng: $\int\limits^{1}_{0}\sqrt{a-[f(x)]^{2}dx}\leq \sqrt{1-[\int\limits^{1}_{0}f(x)dx]^{2}}$
  4. Đề bài: Cho $a+b+c+d=2$. Chứng minh rằng:     $a^2+b^2+c^2+d^2\geq 1$
  5. Đề bài: Cho $a_{1},a_{2},…,a_{n},b_{1},b_{2},…,b_{n}\in R$.Chứng minh rằng:$\sum\limits_{i=1}^n\sqrt{a_{i}^{2}+b_{i}^{2}}\geq \sqrt{(\sum\limits_{i=1}^na_{i})^{2}+(\sum\limits_{i=1}^n b_{i})^{2}}$
  6. Đề bài: Chứng minh rằng với mọi số thực $a$ luôn có:   $\sqrt{a^2+a+1}+\sqrt{a^2-a+1}\geq 2 .   (1)$
  7. Đề bài: Cho $a,b,c>0$.Chứng minh rằng : $\frac{a^{5}+b^{5}+c^{5}}{3}\geq \left ( \frac{a+b+c}{3} \right )^{5}$   $\left ( 1 \right )$
  8. Đề bài: Cho $ x>y>0$. Chứng minh rằng : $ (x-y)[2-(x+y)]
  9. Đề bài: Cho ba số dương $x,y,z$ biết: $2x^2+3y^2-2z^3=0$Chứng minh rằng $z$ là số lớn nhất trong ba số đã cho.
  10. Đề bài: Chứng minh rằng:$C_{n}^{0}-\frac{1}{3}C_{n}^{1}+\frac{1}{5}C_{n}^{2}+…+\frac{(-1)^{n}}{2n+1}C_{n}^{n}\geq \sqrt{\frac{3n+1}{4n^{2}+4n+1}}$
  11. Đề bài: Cho ba số $a,b,c$ thoả mãn: $\begin{cases}a+b+c=2 \\ a^2+b^2+c^2=2 \end{cases}$.Chứng minh rằng $0\leq a,b,c\leq \frac{4}{3}$.
  12. Đề bài: Cho $x+2y+3z=2$.Chứng minh rằng:$\sqrt{1+x^{2}}+2\sqrt{1+y^{2}}+3\sqrt{1+z^{2}}\geq 2\sqrt{10}$
  13. Đề bài: Chứng minh rằng:$\frac{1}{1+(n+1)^{2}}
  14. Đề bài: Cho $0\leq x,y,z\leq 1.$Chứng minh rằng :$\left ( 2^{x}+2^{y}+2^{z} \right ).\left ( 2^{-x}+2^{-y}+2^{-z} \right )\leq \frac{81}{8}$
  15. Đề bài: Chứng minh rằng: \(\sqrt{a^{2}+b^{2}}+\sqrt{c^{2}+d^{2}}\geq \sqrt{(a+c)^{2}+(b+d)^{2}}\)  (1)

Reader Interactions

Trả lời Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC




Booktoan.com (2015 - 2023) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
THÔNG TIN:
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.