• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán

Bài tập Hàm số

Đề: Cho $n$ số $a_{i}$ phân biệt . Tìm GTNN:a)$f(x)=|x-a_{1}|+|x-a_{2}|+…+|x-a_{n}|$b)$f(x)=(x-a_{1})^{2}+(x-a_{2})^{2}+…+(x-a_{n})^{2}   $

Ngày 13/03/2020 Thuộc chủ đề:Bài tập Hàm số Tag với:Giá trị lớn nhất - nhỏ nhất

Đề bài: Cho $n$ số $a_{i}$ phân biệt . Tìm GTNN:a)$f(x)=|x-a_{1}|+|x-a_{2}|+...+|x-a_{n}|$b)$f(x)=(x-a_{1})^{2}+(x-a_{2})^{2}+...+(x-a_{n})^{2}   $ Lời giải Thêm lời giải chi tiết … [Đọc thêm...] vềĐề: Cho $n$ số $a_{i}$ phân biệt . Tìm GTNN:a)$f(x)=|x-a_{1}|+|x-a_{2}|+…+|x-a_{n}|$b)$f(x)=(x-a_{1})^{2}+(x-a_{2})^{2}+…+(x-a_{n})^{2}   $

Đề: Cho hàm số $=f(x)=\frac{x^{2}}{x^{2}+1}$ với $ x\geq 0$Cho biết hàm số ngược $y=f^{-1}(x)$ của hàm số $y=f(x)$

Ngày 13/03/2020 Thuộc chủ đề:Bài tập Hàm số Tag với:Tính chất của hàm số

Đề bài: Cho hàm số $=f(x)=\frac{x^{2}}{x^{2}+1}$ với $ x\geq 0$Cho biết hàm số ngược $y=f^{-1}(x)$ của hàm số $y=f(x)$ Lời giải Hàm số ngược $y=f^{-1}(x)$Từ $y=\frac{x^{2}}{x^{2}+1}$ ta có: $(x^{2}+1)y=x^{2}$  hay $x^{2}=\frac{y}{1-y}$Vậy ta có : $x=f^{-1}(y)=\sqrt{\frac{y}{1-y}}$ với $ 0\leq yGọi $x$ là biến số và $y$ là ảnh của $x$ qua $f^{-1}$ ta có:          … [Đọc thêm...] vềĐề: Cho hàm số $=f(x)=\frac{x^{2}}{x^{2}+1}$ với $ x\geq 0$Cho biết hàm số ngược $y=f^{-1}(x)$ của hàm số $y=f(x)$

Đề: Cho $f(x)=\frac{x^{2}+x+1}{x+1}$. Tính $f^{'}(1)$

Ngày 13/03/2020 Thuộc chủ đề:Bài tập Hàm số Tag với:Đạo hàm

Đề bài: Cho $f(x)=\frac{x^{2}+x+1}{x+1}$. Tính $f^{'}(1)$ Lời giải $f(x)=\frac{(x^{2}+x+1)(x+1)^{'}-(x^{2}+x+1)(x-1)^{'}}{(x-1)^{2}}=\frac{(2x+1)(x+1)-(x^{2}+x+1)}{(x-1)^{2}}$          $=\frac{x^{2}+2x}{(x+1)^{2}}$$\Rightarrow f^{'}(1)=\frac{3}{4}$ … [Đọc thêm...] vềĐề: Cho $f(x)=\frac{x^{2}+x+1}{x+1}$. Tính $f^{'}(1)$

Đề: Cho hàm số:  $y = \frac{{{x^2} + mx + 1}}{{x – 1}}$1)    Tìm $m$ để hàm số đồng biến trên khoảng $\left( { – \infty ;1} \right)$ và trên $\left( {1; + \infty } \right)$.2)    Tìm $m$ để tiệm cận xiên của đồ thị hàm số tạo với các trục tọa độ một tam giác có diện tích bằng 8 (diện tích đơn vị).3)    Tìm $m$ để đường thẳng $y = m$ cắt đồ thị hàm số tại 2 điểm $A, B$ , $OA \bot OB$.4)    Khảo sát sự biến thiên và vẽ đồ thị của hàm số ứng với $m = 1$

Ngày 13/03/2020 Thuộc chủ đề:Bài tập Hàm số Tag với:Đường tiệm cận của đồ thị

Đề bài: Cho hàm số:  $y = \frac{{{x^2} + mx + 1}}{{x - 1}}$1)    Tìm $m$ để hàm số đồng biến trên khoảng $\left( { - \infty ;1} \right)$ và trên $\left( {1; + \infty } \right)$.2)    Tìm $m$ để tiệm cận xiên của đồ thị hàm số tạo với các trục tọa độ một tam giác có diện tích bằng 8 (diện tích đơn vị).3)    Tìm $m$ để đường thẳng $y = m$ cắt đồ thị hàm số tại 2 điểm $A, B$ , … [Đọc thêm...] vềĐề: Cho hàm số:  $y = \frac{{{x^2} + mx + 1}}{{x – 1}}$1)    Tìm $m$ để hàm số đồng biến trên khoảng $\left( { – \infty ;1} \right)$ và trên $\left( {1; + \infty } \right)$.2)    Tìm $m$ để tiệm cận xiên của đồ thị hàm số tạo với các trục tọa độ một tam giác có diện tích bằng 8 (diện tích đơn vị).3)    Tìm $m$ để đường thẳng $y = m$ cắt đồ thị hàm số tại 2 điểm $A, B$ , $OA \bot OB$.4)    Khảo sát sự biến thiên và vẽ đồ thị của hàm số ứng với $m = 1$

Đề: Tìm đạo hàm của hàm số: $y=f(x)=\begin{cases}1                                        với  x=0 \\ \frac{1-\cos x}{x}             với  x \neq  0\end{cases}$

Ngày 13/03/2020 Thuộc chủ đề:Bài tập Hàm số Tag với:Đạo hàm

Đề bài: Tìm đạo hàm của hàm số: $y=f(x)=\begin{cases}1                                        với  x=0 \\ \frac{1-\cos x}{x}             với  x \neq  0\end{cases}$ Lời giải Ta có $f(0)=1$Ta lại có: $\mathop {\lim }\limits_{x \to 0}f(x) = \mathop {\lim }\limits_{x \to 0}\frac {1-\cos x}{x}=\mathop {\lim }\limits_{x \to 0}\frac {2\sin^2\frac{x}{2}}{2.\frac{x}{2}}=\mathop … [Đọc thêm...] vềĐề: Tìm đạo hàm của hàm số: $y=f(x)=\begin{cases}1                                        với  x=0 \\ \frac{1-\cos x}{x}             với  x \neq  0\end{cases}$

Đề: Cho hàm số  $y = \frac{2x – 1}{x + 1}$. Chứng minh rằng đường thẳng $d: y = – x + 1$ là truc đối xứng của $(C)$.

Ngày 13/03/2020 Thuộc chủ đề:Bài tập Hàm số Tag với:Tâm đối xứng - trục đối xứng

Đề bài: Cho hàm số  $y = \frac{2x - 1}{x + 1}$. Chứng minh rằng đường thẳng $d: y = - x + 1$ là truc đối xứng của $(C)$. Lời giải Giao điểm hai tiệm cận  I(- 1;2) . Chuyển hệ trục toạ độ Oxy --> IXY: $\left\{ \begin{array}{l}x = X - 1\\y = Y + 2\end{array} \right.$Hàm số đã cho trở thành (C'): Y = $ - \frac{3}{X}$ Hàm số (C') đồng biến nên (C') đối xứng qua đường thẳng Y = … [Đọc thêm...] vềĐề: Cho hàm số  $y = \frac{2x – 1}{x + 1}$. Chứng minh rằng đường thẳng $d: y = – x + 1$ là truc đối xứng của $(C)$.

Đề: Cho hàm số $y=\frac{ax^{2}+(2a+1)x+a+3}{x+2}$ $(1)$với \(a \ne  – 1\)$1$. Chứng minh tiệm cận xiên của đồ thị hàm số $(1)$ luôn đi qua $1$ điểm cố định.$2$. Với giá trị nào của $a$ thì  đồ thị của $(1)$ tiếp xúc với đường thẳng \(y = a + 4\).

Ngày 13/03/2020 Thuộc chủ đề:Bài tập Hàm số Tag với:Khảo sát và vẽ đồ thị hàm số

Đề bài: Cho hàm số $y=\frac{ax^{2}+(2a+1)x+a+3}{x+2}$ $(1)$với \(a \ne  - 1\)$1$. Chứng minh tiệm cận xiên của đồ thị hàm số $(1)$ luôn đi qua $1$ điểm cố định.$2$. Với giá trị nào của $a$ thì  đồ thị của $(1)$ tiếp xúc với đường thẳng \(y = a + 4\). Lời giải $1$. Ta có:\(y = f\left( x \right) = \frac{{{\rm{a}}{{\rm{x}}^2} + \left( {2a + 1} \right)x + a + 3}}{{x + 2}}\, = … [Đọc thêm...] vềĐề: Cho hàm số $y=\frac{ax^{2}+(2a+1)x+a+3}{x+2}$ $(1)$với \(a \ne  – 1\)$1$. Chứng minh tiệm cận xiên của đồ thị hàm số $(1)$ luôn đi qua $1$ điểm cố định.$2$. Với giá trị nào của $a$ thì  đồ thị của $(1)$ tiếp xúc với đường thẳng \(y = a + 4\).

Đề: Cho hàm số   $ y = \frac{(m-1)x + m}{x – m} $   $(C_m) $. Cho điểm  $ M(x_0;y_0) \in  $  $ \left( {{C_3}} \right) $ . Tiếp tuyến của  $ (C_3) $ tại $M$ cắt các tiệm cận của $(C)$ tại các điểm $A$ và $B$. Chứng minh diện tích tam giác $AIB$ không đổi, $I$ là giao của $2$ tiệm cận. Tìm $M$ để chu vi tam giác $AIB$ nhỏ nhất.

Ngày 13/03/2020 Thuộc chủ đề:Bài tập Hàm số Tag với:Khoảng cách trong hàm số

Đề bài: Cho hàm số   $ y = \frac{(m-1)x + m}{x - m} $   $(C_m) $. Cho điểm  $ M(x_0;y_0) \in  $  $ \left( {{C_3}} \right) $ . Tiếp tuyến của  $ (C_3) $ tại $M$ cắt các tiệm cận của $(C)$ tại các điểm $A$ và $B$. Chứng minh diện tích tam giác $AIB$ không đổi, $I$ là giao của $2$ tiệm cận. Tìm $M$ để chu vi tam giác $AIB$ nhỏ nhất. Lời giải Điểm  $ M \in \left( {{C_3}} … [Đọc thêm...] vềĐề: Cho hàm số   $ y = \frac{(m-1)x + m}{x – m} $   $(C_m) $. Cho điểm  $ M(x_0;y_0) \in  $  $ \left( {{C_3}} \right) $ . Tiếp tuyến của  $ (C_3) $ tại $M$ cắt các tiệm cận của $(C)$ tại các điểm $A$ và $B$. Chứng minh diện tích tam giác $AIB$ không đổi, $I$ là giao của $2$ tiệm cận. Tìm $M$ để chu vi tam giác $AIB$ nhỏ nhất.

Đề: Cho hàm số  $y = {x^3} + ax^2 +ax + a$ 1) Khảo sát sự biến thiên và vẽ đồ thị của hàm số ứng với $a =  – 1$.2) Xác định $a$ để hàm số đã cho là đồng biến trên $R$

Ngày 13/03/2020 Thuộc chủ đề:Bài tập Hàm số Tag với:Khảo sát và vẽ đồ thị hàm số

Đề bài: Cho hàm số  $y = {x^3} + ax^2 +ax + a$ 1) Khảo sát sự biến thiên và vẽ đồ thị của hàm số ứng với $a =  - 1$.2) Xác định $a$ để hàm số đã cho là đồng biến trên $R$ Lời giải $1)$ Dành cho bạn đọc$2)$ $y' = 3{x^2} + 2ax + a$    $\Delta  = {a^2} - 3a$Để có $y' \ge 0$ với mọi $x \in R$, ta phải có  $\Delta ' = {a^2} - 3a \le 0 \Leftrightarrow 0 \le a \le 3$ … [Đọc thêm...] vềĐề: Cho hàm số  $y = {x^3} + ax^2 +ax + a$ 1) Khảo sát sự biến thiên và vẽ đồ thị của hàm số ứng với $a =  – 1$.2) Xác định $a$ để hàm số đã cho là đồng biến trên $R$

Đề: Cho \(x^{2}+y^{2}=2\) (\(x,y>0\)). Tìm giá trị lớn nhất của \((x+y)xy\).

Ngày 13/03/2020 Thuộc chủ đề:Bài tập Hàm số Tag với:Giá trị lớn nhất - nhỏ nhất

Đề bài: Cho \(x^{2}+y^{2}=2\) (\(x,y>0\)). Tìm giá trị lớn nhất của \((x+y)xy\). Lời giải Ta có: \(x^{2}+y^{2}\geq 2xy \forall x,y \Rightarrow xy\leq 1\)Theo Bunhiacopski, ta có:\(x+y\leq \sqrt{2(x^{2}+y^{2})} \Rightarrow x+y\leq 2\)Vậy \((x+y)xy\leq 2 \Rightarrow (x+y)xy\) lớn nhất là \(2\) khi \(x=y=1\). … [Đọc thêm...] vềĐề: Cho \(x^{2}+y^{2}=2\) (\(x,y>0\)). Tìm giá trị lớn nhất của \((x+y)xy\).

  • « Chuyển đến Trang trước
  • Trang 1
  • Interim pages omitted …
  • Trang 11
  • Trang 12
  • Trang 13
  • Trang 14
  • Trang 15
  • Interim pages omitted …
  • Trang 61
  • Chuyển đến Trang sau »

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.