• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán

Trắc nghiệm Tích phân

Hình vẽ dưới đây mô tả mặt cắt ngang của ngọn đuốc bằng kim loại được thiết kế cho một đại hội thể thao lớn. Ngọn đuốc có chiều cao $7,5\text{ }\!\!~\!\!\text{ m}$; mặt trên có chiều rộng 8 m ; mặt dưới có chiều rộng 2 m ; hai đường biên của ngọn đuốc đối xứng nhau qua trục $Oy$ và được cho bởi đường cong có phương trình $y=f\left( x \right)=a-\frac{b}{{{x}^{2}}}$ (đơn vị trên mỗi hệ trục tọa độ là mét)

Ngày 08/06/2025 Thuộc chủ đề:Trắc nghiệm Tích phân Tag với:Toán 12 thực tế TÍCH PHÂN đúng sai

ĐỀ BÀI Hình vẽ dưới đây mô tả mặt cắt ngang của ngọn đuốc bằng kim loại được thiết kế cho một đại hội thể thao lớn. Ngọn đuốc có chiều cao $7,5\text{ }\!\!~\!\!\text{ m}$; mặt trên có chiều rộng 8 m ; mặt dưới có chiều rộng 2 m ; hai đường biên của ngọn đuốc đối xứng nhau qua trục $Oy$ và được cho bởi đường cong có phương trình $y=f\left( x \right)=a-\frac{b}{{{x}^{2}}}$ (đơn … [Đọc thêm...] vềHình vẽ dưới đây mô tả mặt cắt ngang của ngọn đuốc bằng kim loại được thiết kế cho một đại hội thể thao lớn. Ngọn đuốc có chiều cao $7,5\text{ }\!\!~\!\!\text{ m}$; mặt trên có chiều rộng 8 m ; mặt dưới có chiều rộng 2 m ; hai đường biên của ngọn đuốc đối xứng nhau qua trục $Oy$ và được cho bởi đường cong có phương trình $y=f\left( x \right)=a-\frac{b}{{{x}^{2}}}$ (đơn vị trên mỗi hệ trục tọa độ là mét)

Cho hàm số $f(x)$ liên tục trên $\mathbb{R}$ thỏa $f(x)=3 f(2 x)$. Gọi $F(x)$ là nguyên hàm của $f(x)$ trên $\mathbb{R}$ thỏa mãn $F(4)=3$ và $F(2)+4 F(8)=0$. Khi đó $\int_{0}^{2} f(3 x+2) \mathrm{d} x$ bằng

Ngày 30/05/2023 Thuộc chủ đề:Trắc nghiệm Tích phân Tag với:tich phan nang cao, VDC Toan 2023

Cho hàm số $f(x)$ liên tục trên $\mathbb{R}$ thỏa $f(x)=3 f(2 x)$. Gọi $F(x)$ là nguyên hàm của $f(x)$ trên $\mathbb{R}$ thỏa mãn $F(4)=3$ và $F(2)+4 F(8)=0$. Khi đó $\int_{0}^{2} f(3 x+2) \mathrm{d} x$ bằngA. 5 .B. -5 .C. 3 .D. -3 . … [Đọc thêm...] vềCho hàm số $f(x)$ liên tục trên $\mathbb{R}$ thỏa $f(x)=3 f(2 x)$. Gọi $F(x)$ là nguyên hàm của $f(x)$ trên $\mathbb{R}$ thỏa mãn $F(4)=3$ và $F(2)+4 F(8)=0$. Khi đó $\int_{0}^{2} f(3 x+2) \mathrm{d} x$ bằng

Cho hàm số $f(x)$ có nguyên hàm $F(x)$ và thỏa mãn $x f^{\prime}(x)=f(x)-x f^{2}(x)$ với mọi $x \in(0 ;+\infty)$. Biết $f(1)=1$ và $F(1)=\ln 2$. Tính $F(2)$.

Ngày 28/05/2023 Thuộc chủ đề:Trắc nghiệm Tích phân Tag với:tich phan nang cao, VDC Toan 2023

Cho hàm số $f(x)$ có nguyên hàm $F(x)$ và thỏa mãn $x f^{\prime}(x)=f(x)-x f^{2}(x)$ với mọi $x \in(0 ;+\infty)$. Biết $f(1)=1$ và $F(1)=\ln 2$. Tính $F(2)$.A. $2 \ln 2$.B. $\ln 5$.C. $3 \ln 2$.D. $2 \ln 3$. … [Đọc thêm...] vềCho hàm số $f(x)$ có nguyên hàm $F(x)$ và thỏa mãn $x f^{\prime}(x)=f(x)-x f^{2}(x)$ với mọi $x \in(0 ;+\infty)$. Biết $f(1)=1$ và $F(1)=\ln 2$. Tính $F(2)$.

Biết \(F\left( x \right) = {e^{2x}}\) là một nguyên hàm của hàm số \(f\left( x \right)\). Khi đó khẳng định nào sau đây là đúng?

Ngày 20/05/2023 Thuộc chủ đề:Trắc nghiệm Nguyên hàm, Trắc nghiệm Tích phân Tag với:On thi nguyen ham tich phan

Biết \(F\left( x \right) = {e^{2x}}\) là một nguyên hàm của hàm số \(f\left( x \right)\). Khi đó khẳng định nào sau đây là đúng? A. \(\int {f'\left( x \right)dx = {e^{2x}} + C} \). B. \(\int {f'\left( x \right)dx = \frac{1}{2}{e^{2x}} + C} \). C. \(\int {f'\left( x \right)dx = {e^{2x + 1}} + C} \). D. \(\int {f'\left( x \right)dx = 2{e^{2x}} + C} \). Lời … [Đọc thêm...] vềBiết \(F\left( x \right) = {e^{2x}}\) là một nguyên hàm của hàm số \(f\left( x \right)\). Khi đó khẳng định nào sau đây là đúng?

Cho hàm số \(f\left( x \right) = {\cos ^2}x\). Khẳng định nào sau đây là đúng?

Ngày 20/05/2023 Thuộc chủ đề:Trắc nghiệm Nguyên hàm, Trắc nghiệm Tích phân Tag với:On thi nguyen ham tich phan

Cho hàm số \(f\left( x \right) = {\cos ^2}x\). Khẳng định nào sau đây là đúng? A.\(\int {f\left( x \right)dx} = \frac{x}{2} - \frac{{\sin 2x}}{4} + C\). B. \(\int {f\left( x \right)dx} = \frac{{2x + \sin 2x}}{4} + C\). C. \(\int {f\left( x \right)dx} = {\sin ^2}x + C\). D. \(\int {f\left( x \right)dx} = \sin 2x + C\). Lời giải: \(\int {f\left( x \right)dx} = … [Đọc thêm...] vềCho hàm số \(f\left( x \right) = {\cos ^2}x\). Khẳng định nào sau đây là đúng?

Để tính \(I = \int {\frac{{{e^{\tan x}}}}{{co{s^2}x}}{\rm{d}}x} \) theo phương pháp đổi biến số, ta đặt \(t = \tan x\). Khi đó

Ngày 20/05/2023 Thuộc chủ đề:Trắc nghiệm Nguyên hàm, Trắc nghiệm Tích phân Tag với:On thi nguyen ham tich phan

Để tính \(I = \int {\frac{{{e^{\tan x}}}}{{co{s^2}x}}{\rm{d}}x} \) theo phương pháp đổi biến số, ta đặt \(t = \tan x\). Khi đó A. \(I = \int {{e^{\tan t}}{\rm{dt}}} \) B. \(I = \int {{e^t}{\rm{dt}}} \) C. \(I = \int {{\rm{tdt}}} \). D. \(I = \int {\frac{{{e^t}}}{{co{s^2}t}}{\rm{dt}}} \). Lời giải: Đặt \(t = \tan x \Rightarrow dt = \frac{1}{{co{s^2}x}}dx … [Đọc thêm...] vềĐể tính \(I = \int {\frac{{{e^{\tan x}}}}{{co{s^2}x}}{\rm{d}}x} \) theo phương pháp đổi biến số, ta đặt \(t = \tan x\). Khi đó

\(\int {\frac{{2x – 1}}{{x + 1}}{\rm{d}}x} \) bằng

Ngày 20/05/2023 Thuộc chủ đề:Trắc nghiệm Nguyên hàm, Trắc nghiệm Tích phân Tag với:On thi nguyen ham tich phan

\(\int {\frac{{2x - 1}}{{x + 1}}{\rm{d}}x} \) bằng A. \(2x - 3\ln \left| {x + 1} \right| + C\). B. \(2x + 3\ln \left| {x + 1} \right| + C\) C. \(2x - 3\ln \left| {x - 1} \right| + C\). D. \(x - 3\ln \left| {x + 1} \right| + C\). Lời giải: \(\int {\frac{{2x - 1}}{{x + 1}}{\rm{d}}x} = \int {\frac{{2\left( {x + 1} \right) - 3}}{{x + 1}}{\rm{d}}x} = \int {\left( … [Đọc thêm...] về\(\int {\frac{{2x – 1}}{{x + 1}}{\rm{d}}x} \) bằng

Họ các nguyên hàm của hàm số \(f(x) = x\left( {1 + {e^x}} \right)\)là

Ngày 20/05/2023 Thuộc chủ đề:Trắc nghiệm Nguyên hàm, Trắc nghiệm Tích phân Tag với:On thi nguyen ham tich phan

Họ các nguyên hàm của hàm số \(f(x) = x\left( {1 + {e^x}} \right)\)là A. \({x^2} + \left( {x - 1} \right){e^x} + C\). B. \(\frac{{{x^2}}}{2} + x{e^x} + C\). C. \(\frac{{{x^2}}}{2} + \left( {1 - x} \right){e^x} + C\). D. \(\frac{{{x^2}}}{2} + \left( {x - 1} \right){e^x} + C\). Lời giải: Ta có \(\int {x\left( {1 + {e^x}} \right){\rm{d}}} x = \int {\left( {x + … [Đọc thêm...] vềHọ các nguyên hàm của hàm số \(f(x) = x\left( {1 + {e^x}} \right)\)là

Gọi \(F\left( x \right)\) là một nguyên hàm của hàm số \(y = \sqrt {{{\ln }^2}x + 1} .\frac{{\ln x}}{x}\) mà \(F\left( 1 \right) = \frac{1}{3}\). Giá trị \({F^2}\left( e \right)\) bằng

Ngày 20/05/2023 Thuộc chủ đề:Trắc nghiệm Nguyên hàm, Trắc nghiệm Tích phân Tag với:On thi nguyen ham tich phan

Gọi \(F\left( x \right)\) là một nguyên hàm của hàm số \(y = \sqrt {{{\ln }^2}x + 1} .\frac{{\ln x}}{x}\) mà \(F\left( 1 \right) = \frac{1}{3}\). Giá trị \({F^2}\left( e \right)\) bằng A. \(\frac{1}{3}\). B. \(\frac{1}{9}\). C. \(\frac{8}{3}\). D. \(\frac{8}{9}\). Lời giải: Đặt \(I = \int {\sqrt {{{\ln }^2}x + 1} .\frac{{\ln x}}{x}} dx\) \(t = \sqrt {{{\ln … [Đọc thêm...] vềGọi \(F\left( x \right)\) là một nguyên hàm của hàm số \(y = \sqrt {{{\ln }^2}x + 1} .\frac{{\ln x}}{x}\) mà \(F\left( 1 \right) = \frac{1}{3}\). Giá trị \({F^2}\left( e \right)\) bằng

Cho hàm số \(f(x) = \frac{{2{x^4} + 3}}{{{x^2}}}\). Khẳng định nào sau đây là đúng?

Ngày 20/05/2023 Thuộc chủ đề:Trắc nghiệm Nguyên hàm, Trắc nghiệm Tích phân Tag với:On thi nguyen ham tich phan

Cho hàm số \(f(x) = \frac{{2{x^4} + 3}}{{{x^2}}}\). Khẳng định nào sau đây là đúng? A. \(\int {f(x)dx = \frac{{2{x^3}}}{3} + \frac{3}{{2x}} + C} \). B. \(\int {f(x)dx = \frac{{2{x^3}}}{3} - \frac{3}{x} + C} \). C. \(\int {f(x)dx = \frac{{2{x^3}}}{3} + \frac{3}{x} + C} \). D. \(\int {f(x)dx = 2{x^3} - \frac{3}{x} + C} \). Lời giải: Ta có \(\int {f(x)dx = \int … [Đọc thêm...] vềCho hàm số \(f(x) = \frac{{2{x^4} + 3}}{{{x^2}}}\). Khẳng định nào sau đây là đúng?

  • « Chuyển đến Trang trước
  • Trang 1
  • Trang 2
  • Trang 3
  • Trang 4
  • Interim pages omitted …
  • Trang 31
  • Chuyển đến Trang sau »

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.