• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Toán 12
  • Toán 11
  • Toán 10
  • Trắc nghiệm
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán
Bạn đang ở:Trang chủ / Trắc nghiệm Nguyên hàm / Biết tích phân \({\rm{I}} = \int\limits_1^2 {\frac{{\ln {{\left( {2{x^2} + 1} \right)}^x} + 2023x}}{{\ln \left[ {{{\left( {2e{x^2} + e} \right)}^{2{x^2} + 1}}} \right]}}} {\rm{dx = }}\,\,a{\rm{.ln3 + }}\,b{\rm{.ln}}\left( {\frac{{\ln 9e}}{{\ln 3e}}} \right)\) . Với \(a,\,b\, \in \mathbb{Q}\) và \(a,\,b\) là các phân số tối giản. Tính \(P = 8a + 4b\)

Biết tích phân \({\rm{I}} = \int\limits_1^2 {\frac{{\ln {{\left( {2{x^2} + 1} \right)}^x} + 2023x}}{{\ln \left[ {{{\left( {2e{x^2} + e} \right)}^{2{x^2} + 1}}} \right]}}} {\rm{dx = }}\,\,a{\rm{.ln3 + }}\,b{\rm{.ln}}\left( {\frac{{\ln 9e}}{{\ln 3e}}} \right)\) . Với \(a,\,b\, \in \mathbb{Q}\) và \(a,\,b\) là các phân số tối giản. Tính \(P = 8a + 4b\)

Ngày 20/05/2023 Thuộc chủ đề:Trắc nghiệm Nguyên hàm, Trắc nghiệm Tích phân Tag với:On tap nguyen ham tich phan, Tích phân

Biết tích phân \({\rm{I}} = \int\limits_1^2 {\frac{{\ln {{\left( {2{x^2} + 1} \right)}^x} + 2023x}}{{\ln \left[ {{{\left( {2e{x^2} + e} \right)}^{2{x^2} + 1}}} \right]}}} {\rm{dx = }}\,\,a{\rm{.ln3 + }}\,b{\rm{.ln}}\left( {\frac{{\ln 9e}}{{\ln 3e}}} \right)\) . Với \(a,\,b\, \in \mathbb{Q}\) và \(a,\,b\) là các phân số tối giản. Tính \(P = 8a + 4b\)

A. \(P = 1012\) .

B. \(P = 2023\).

C. \(P = 2024\).

D. \(P = 1011\).

Lời giải:

Ta có \(I = \int\limits_1^2 {\frac{x}{{2{x^2} + 1}} \cdot \frac{{\ln \left( {2{x^2} + 1} \right) + 2023}}{{\ln \left( {2{x^2} + 1} \right) + 1}}{\rm{dx}}} = \frac{1}{4}\int\limits_1^2 {\frac{{4x}}{{2{x^2} + 1}} \cdot \frac{{\ln \left( {2{x^2} + 1} \right) + 2023}}{{\ln \left( {2{x^2} + 1} \right) + 1}}{\rm{dx}}} \)

Đặt \({\rm{t}} = \ln \left( {2{x^2} + 1} \right) \Rightarrow {\rm{dt}} = \frac{{4x}}{{2{x^2} + 1}}{\rm{dx}}\) .

Đổi cận

x12
t\(\ln 3\)\(\ln 9\)

\(I = \frac{1}{4}\int\limits_{\ln 3}^{\ln 9} {\frac{{{\rm{t}} + 2023}}{{{\rm{t}} + 1}}} {\rm{dt}}\,\,{\rm{ = }}\frac{1}{4}\int\limits_{\ln 3}^{\ln 9} {\left( {1 + \frac{{2022}}{{{\rm{t}} + 1}}} \right)} {\rm{dt}}\,\,{\rm{ = }}\frac{1}{4}\left( {{\rm{t}} + 2022\ln |{\rm{t}} + 1|} \right)\left| {_{\ln 3}^{\ln 9}} \right.\)

\(I = \frac{1}{4}\left( {\ln 9 – \ln 3} \right) + \frac{{1011}}{2}\left( {\ln \left( {\ln 9 + 1} \right) – \ln \left( {\ln 3 + 1} \right)} \right)\)

\(I = \frac{1}{4}\ln 3 + \frac{{1011}}{2}\left( {\ln \left( {\ln (9e)} \right) – \ln \left( {\ln (3e)} \right)} \right)\,\, = \frac{1}{4}\ln 3 + \frac{{1011}}{2}\ln \left( {\frac{{\ln 9e}}{{\ln 3e}}} \right)\)

Suy ra \(a = \frac{1}{4};\,\,b = \frac{{1011}}{2}\, \Rightarrow P = 8a + 4b = 2024.\) Chọn đáp án

C.

=========== Đây là các câu ÔN THI TN THPT MÔN TOÁN 2023 – CHUYÊN ĐỀ NGUYÊN HAM – TICH PHÂN – ỨNG DỤNG.

Bài liên quan:

  1. CHUYÊN ĐỀ TOÁN 12 – TÍCH PHÂN
  2. Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}3{x^2} – 2{\rm{ khi }}x \le 1\\2x – 1{\rm{ khi }}x > 1\end{array} \right.\). Tính \(I = \int\limits_{ – \frac{\pi }{2}}^{\frac{\pi }{2}} {f\left( {1 – \sin x} \right)\cos x{\rm{d}}x} \).

  3. Cho hàm số \(y = f\left( x \right)\) liên tục trên khoảng \(\left( {0; + \infty } \right)\) và thỏa mãn \(f\left( {{x^2} + 1} \right) + \frac{{f\left( {\sqrt x } \right)}}{{4x\sqrt x }} = \frac{{2x + 1}}{{2x}}\ln \left( {x + 1} \right)\). Biết \(\int\limits_1^{17} {f\left( x \right){\rm{d}}x = a\ln 5 – 2\ln b + c} \) với \(a,{\rm{ }}b,{\rm{ }}c \in \mathbb{R}\). Tính \(T = a – 3b + 2c\).

  4. Giả sử tích phân \(I = \int\limits_{ – \frac{\pi }{2}}^{\frac{\pi }{2}} {\frac{{{x^2} + \cos x}}{{1 + {3^x}}}dx} = a{\pi ^3} + b\pi + c\), trong đó \(a,b,c \in \mathbb{Q}\). Tính \(S = 8a + 4b + c\)

  5. Cho \(F\left( x \right) = \frac{1}{{2{x^2}}}\) là một nguyên hàm của hàm số \(\frac{{f\left( x \right)}}{x}\). Gọi \(G\left( x \right)\) là một nguyên hàm của hàm số \(f’\left( x \right)\ln x\) và \(G\left( 1 \right) = – \frac{1}{2}\). Phương trình \(G\left( {2{x^2} – 1} \right) = m\) có 4 nghiệm phân biệt khi \(m\) thuộc khoảng nào?

  6. Bên trong hình vuông cạnh \(a\), dựng hình sao bốn cánh đều như hình vẽ sau (các kích thước cần thiết cho như ở trong hình).

  7. Cho hàm số bậc nhất \(f\left( x \right)\) có đồ thị như hình vẽ bên dưới. Tích phân \(\int\limits_0^4 {f\left( x \right).dx} \) bằng

  8. Tính \(\int\limits_1^{\frac{{\sqrt 6 + \sqrt 2 }}{2}} {\frac{{ – 4{x^4} + {x^2} – 3}}{{{x^4} + 1}}{\rm{d}}x} = \frac{{\sqrt 2 }}{8}\left( {a\sqrt 3 + b + c\pi } \right) + 4\), với \(a,b,c\) là các số nguyên. Khi đó \(a + {b^2} + {c^4}\) bằng

  9. Biết \(\int\limits_0^1 {\sqrt {\frac{{2 + x}}{{2 – x}}} dx} = \frac{\pi }{a} + b\sqrt 3 + c\) với \(a,{\rm{ }}b,{\rm{ }}c \in \mathbb{Z}\). Tính \(P = a + b +

    C.\)

  10. Với mọi \(x \in \left[ {1; + \infty } \right)\), hàm số \(f\left( x \right)\) xác định, liên tục, nhận giá trị dương đồng thời thỏa mãn \(3{x^4}f\left( x \right) + {f^3}\left( x \right) = 2{x^5}f’\left( x \right)\) và \(f\left( 1 \right) = 1\). Giá trị của \(f\left( 5 \right)\) bằng

  11. Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}3{x^2} + 2x + m\,\,khi\,\,x \ge 1\\5 – 2x\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,khi\,\,x < 1\end{array} \right.\) (\(m\) là tham số thực). Biết rằng \(f\left( x \right)\) có nguyên hàm trên \(\mathbb{R}\) là \(F\left( x \right)\) thỏa mãn \(F\left( { – 2} \right) = – 10\). Khi đó \(F\left( 3 \right)\) bằng

  12. Tích phân \(\int\limits_{ – 1}^1 {\left| x \right|.dx} \) bằng

  13. Cho tích phân \(I = \int\limits_0^{\frac{\pi }{4}} {\frac{{\ln \left( {\sin x + \cos x} \right)}}{{{{\cos }^2}x}}{\rm{d}}x = a\pi + b\ln 2} \) với \(a,\,b \in \mathbb{Q},\,\,a,b\)là các phân số tối giản. Tính giá trị biểu thức \(P = 4a + 2b\).

  14. Cho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\) thỏa mãn các điều kiện: \(f\left( 0 \right) = 2\sqrt 2 ,\) \(f\left( x \right) > 0,\) \(\forall x \in \mathbb{R}\) và \(f\left( x \right).f’\left( x \right) = \left( {2x + 1} \right)\sqrt {1 + {f^2}\left( x \right)} ,\) \(\forall x \in \mathbb{R}\). Khi đó giá trị \(f\left( 1 \right)\) bằng

  15. Biết \(I = \int\limits_1^{\sqrt[4]{3}} {\frac{1}{{x({x^4} + 1)}}} dx = \frac{1}{a}\ln \frac{b}{c}\) với \(a,{\rm{ }}b,{\rm{ }}c \in {\mathbb{N}^ * }\) và \(\frac{b}{c}\) là phân số tối giản. Tính \(T = ab

    C.\)

Reader Interactions

Để lại một bình luận Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.