• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Toán 12
  • Toán 11
  • Toán 10
  • Trắc nghiệm
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán

Trắc nghiệm Phương trình và bất phương trình mũ

Số nghiệm nguyên không âm của bất phương trình \(\sqrt {{{15.2}^{x + 1}} + 1} \ge \left| {{2^x} – 1} \right| + {2^{x + 1}}\) bằng bao nhiêu?

Ngày 19/07/2021 Thuộc chủ đề:Trắc nghiệm Phương trình và bất phương trình Logarit, Trắc nghiệm Phương trình và bất phương trình mũ Tag với:Phuong trinh mu - logarit co nghiem, TN THPT 2021

Câu hỏi: Số nghiệm nguyên không âm của bất phương trình \(\sqrt {{{15.2}^{x + 1}} + 1} \ge \left| {{2^x} - 1} \right| + {2^{x + 1}}\) bằng bao nhiêu? A. \(3\) B. \(1\) C. \(2\) D. \(0\) LỜI GIẢI CHI TIẾT Đặt \(t = {2^x} \ge 1\)(do \(x \ge 0\)) bất phương trình trở thành: \(\sqrt {30t + 1} \ge \left| {t - 1} \right| + 2t\). \( \Leftrightarrow … [Đọc thêm...] vềSố nghiệm nguyên không âm của bất phương trình \(\sqrt {{{15.2}^{x + 1}} + 1} \ge \left| {{2^x} – 1} \right| + {2^{x + 1}}\) bằng bao nhiêu?

Có bao nhiêu số nguyên dương \(y\) sao cho ứng với mỗi \(y\) có không quá 2186 số nguyên \(x\) thỏa \(\sqrt {{3^x} – 27} .\left( {{{\log }_x}x – y} \right) \le 0\)

Ngày 19/07/2021 Thuộc chủ đề:Trắc nghiệm Phương trình và bất phương trình Logarit, Trắc nghiệm Phương trình và bất phương trình mũ Tag với:Phuong trinh mu - logarit co nghiem, TN THPT 2021

Câu hỏi: Có bao nhiêu số nguyên dương \(y\) sao cho ứng với mỗi \(y\) có không quá 2186 số nguyên \(x\) thỏa \(\sqrt {{3^x} - 27} .\left( {{{\log }_x}x - y} \right) \le 0\) A. \(7\) B. \(6\). C. \(2186\). D. \(2187\). LỜI GIẢI CHI TIẾT Điều kiện bài toán: \({3^x} - 27 \ge 0 \Leftrightarrow x \ge 3\) Khi đó: \(\sqrt {{3^x} - 27} .\left( {{{\log }_x}x - y} … [Đọc thêm...] vềCó bao nhiêu số nguyên dương \(y\) sao cho ứng với mỗi \(y\) có không quá 2186 số nguyên \(x\) thỏa \(\sqrt {{3^x} – 27} .\left( {{{\log }_x}x – y} \right) \le 0\)

Có bao nhiêu số nguyên dương \(y\) sao cho ứng với mỗi \(y\) có không quá 2186 số nguyên \(x\) thỏa \(\sqrt {{3^x} – 27} .\left( {{{\log }_x}x – y} \right) \le 0\)

Ngày 19/07/2021 Thuộc chủ đề:Trắc nghiệm Phương trình và bất phương trình Logarit, Trắc nghiệm Phương trình và bất phương trình mũ Tag với:Phuong trinh mu - logarit co nghiem, TN THPT 2021

Câu hỏi: Có bao nhiêu số nguyên dương \(y\) sao cho ứng với mỗi \(y\) có không quá 2186 số nguyên \(x\) thỏa \(\sqrt {{3^x} - 27} .\left( {{{\log }_x}x - y} \right) \le 0\) A. \(7\) B. \(6\). C. \(2186\). D. \(2187\). LỜI GIẢI CHI TIẾT Điều kiện bài toán: \({3^x} - 27 \ge 0 \Leftrightarrow x \ge 3\) Khi đó: \(\sqrt {{3^x} - 27} .\left( … [Đọc thêm...] vềCó bao nhiêu số nguyên dương \(y\) sao cho ứng với mỗi \(y\) có không quá 2186 số nguyên \(x\) thỏa \(\sqrt {{3^x} – 27} .\left( {{{\log }_x}x – y} \right) \le 0\)

Gọi \(S\) là tập hợp tất cả cácsố nguyên \(m\) để phương trình \({\log _{\sqrt 2 }}\left( {x – 2} \right) – {\log _2}\left( {mx – 16} \right) = 0\) có hai nghiệm thực phân biệt. Tính tổng các phần tử của \(S\)

Ngày 19/07/2021 Thuộc chủ đề:Trắc nghiệm Phương trình và bất phương trình Logarit, Trắc nghiệm Phương trình và bất phương trình mũ Tag với:Phuong trinh mu - logarit co nghiem, TN THPT 2021

Câu hỏi: Gọi \(S\) là tập hợp tất cả cácsố nguyên \(m\) để phương trình \({\log _{\sqrt 2 }}\left( {x - 2} \right) - {\log _2}\left( {mx - 16} \right) = 0\) có hai nghiệm thực phân biệt. Tính tổng các phần tử của \(S\) A. \(18\) B. \(3\) C. \(15\) D. \(17\) LỜI GIẢI CHI TIẾT Điều kiện \(x > 2\) và \(mx - 16 > 0\). Khi đó \({\log _{\sqrt 2 … [Đọc thêm...] vềGọi \(S\) là tập hợp tất cả cácsố nguyên \(m\) để phương trình \({\log _{\sqrt 2 }}\left( {x – 2} \right) – {\log _2}\left( {mx – 16} \right) = 0\) có hai nghiệm thực phân biệt. Tính tổng các phần tử của \(S\)

Cho hàm số bậc 3 \(y = f\left( x \right)\) có đồ thị như hình vẽ.

Số nghiệm thực của phương trình: \(\left| {f\left( {{x^2} + 1} \right)} \right| = 1\) là.

Ngày 18/07/2021 Thuộc chủ đề:Trắc nghiệm Phương trình và bất phương trình Logarit, Trắc nghiệm Phương trình và bất phương trình mũ Tag với:Phuong trinh mu - logarit co nghiem, TN THPT 2021

Câu hỏi: Cho hàm số bậc 3 \(y = f\left( x \right)\) có đồ thị như hình vẽ. Số nghiệm thực của phương trình: \(\left| {f\left( {{x^2} + 1} \right)} \right| = 1\) là. A. \(3\) B. \(4\) C. \(2\) D. \(5\) LỜI GIẢI CHI TIẾT Ta có: \(\left| {f\left( {{x^2} + 1} \right)} \right| = 1 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{f\left( {{x^2} + 1} … [Đọc thêm...] vềCho hàm số bậc 3 \(y = f\left( x \right)\) có đồ thị như hình vẽ.

Số nghiệm thực của phương trình: \(\left| {f\left( {{x^2} + 1} \right)} \right| = 1\) là.

Có bao nhiêu số nguyên \(x\) thỏa mãn \(\left( {{9^{{x^2}}} – {3^x}{{.9}^{x + 1}}} \right)\left( {{{\log }_2}\left( {2x – 18} \right) – 5} \right) \le 0\)?

Ngày 16/07/2021 Thuộc chủ đề:Trắc nghiệm Phương trình và bất phương trình Logarit, Trắc nghiệm Phương trình và bất phương trình mũ Tag với:Pt mu va Logarit VDC, TN THPT 2021

Câu hỏi: Có bao nhiêu số nguyên \(x\) thỏa mãn \(\left( {{9^{{x^2}}} - {3^x}{{.9}^{x + 1}}} \right)\left( {{{\log }_2}\left( {2x - 18} \right) - 5} \right) \le 0\)? A. 1 B. Vô số. C. 17. D. 16. GY: Điều kiện: \(x > 9\,\,\,\,\left( * \right)\). Trường hợp 1: \(\left\{ \begin{array}{l}{9^{{x^2}}} - {3^x}{.9^{x + 1}} \ge 0\\{\log _2}\left( {2x - 18} … [Đọc thêm...] vềCó bao nhiêu số nguyên \(x\) thỏa mãn \(\left( {{9^{{x^2}}} – {3^x}{{.9}^{x + 1}}} \right)\left( {{{\log }_2}\left( {2x – 18} \right) – 5} \right) \le 0\)?

Với mọi số thực \(a\), \(b\), \(c\) thỏa mãn \({\log _3}a – 2{\log _3}b + 3{\log _{27}}\left( {c + 1} \right) = 1\), khẳng định đúng là

Ngày 16/07/2021 Thuộc chủ đề:Trắc nghiệm Phương trình và bất phương trình Logarit, Trắc nghiệm Phương trình và bất phương trình mũ Tag với:Pt mu va Logarit VDC, TN THPT 2021

Câu hỏi: Với mọi số thực \(a\), \(b\), \(c\) thỏa mãn \({\log _3}a - 2{\log _3}b + 3{\log _{27}}\left( {c + 1} \right) = 1\), khẳng định đúng là A. \(a - 2b + c = 0\). B. \(a - 2b + {\left( {c + 1} \right)^3} = 3\). C. \(a\left( {c + 1} \right) = 3{b^2}\). D. \(a\left( {c + 1} \right) = 9{b^2}\). GY: Ta có: \({\log _3}a - 2{\log _3}b + 3{\log _{27}}\left( {c … [Đọc thêm...] vềVới mọi số thực \(a\), \(b\), \(c\) thỏa mãn \({\log _3}a – 2{\log _3}b + 3{\log _{27}}\left( {c + 1} \right) = 1\), khẳng định đúng là

Có bao nhiêu số nguyên \(y\) sao cho tồn tại \(x \in \left( {\frac{1}{2} ; 5} \right)\) thỏa mãn \({8^{2{x^2} + xy}} = \left( {1 + xy} \right){.8^{4x}}\)?

Ngày 16/07/2021 Thuộc chủ đề:Trắc nghiệm Phương trình và bất phương trình Logarit, Trắc nghiệm Phương trình và bất phương trình mũ Tag với:Pt mu va Logarit VDC, TN THPT 2021

Câu hỏi: Có bao nhiêu số nguyên \(y\) sao cho tồn tại \(x \in \left( {\frac{1}{2} ; 5} \right)\) thỏa mãn \({8^{2{x^2} + xy}} = \left( {1 + xy} \right){.8^{4x}}\)? A. 7. B. C. 6. D. 5. GY: \({8^{2{x^2} + xy}} = \left( {1 + xy} \right){.8^{4x}} \Leftrightarrow {8^{2{x^2} + xy - 4x}} - \left( {1 + xy} \right) = 0\) Xét hàm số \(f\left( x \right) = … [Đọc thêm...] vềCó bao nhiêu số nguyên \(y\) sao cho tồn tại \(x \in \left( {\frac{1}{2} ; 5} \right)\) thỏa mãn \({8^{2{x^2} + xy}} = \left( {1 + xy} \right){.8^{4x}}\)?

Có bao nhiêu số nguyên \(x\) thỏa mãn \(\left( {{8^x} – {2^{{x^3} + 2}}} \right).\left[ {{{\log }_{\sqrt 3 }}\left( {2x + 21} \right) – 4} \right] \ge 0?\)

Ngày 16/07/2021 Thuộc chủ đề:Trắc nghiệm Phương trình và bất phương trình Logarit, Trắc nghiệm Phương trình và bất phương trình mũ Tag với:Pt mu va Logarit VDC, TN THPT 2021

Câu hỏi: Có bao nhiêu số nguyên \(x\) thỏa mãn \(\left( {{8^x} - {2^{{x^3} + 2}}} \right).\left[ {{{\log }_{\sqrt 3 }}\left( {2x + 21} \right) - 4} \right] \ge 0?\) A. \(10\). B. \(8\). C. \(6\). D. \(7\). GY: Điều kiện: \(x > - \frac{{21}}{2}\)\(\left( * \right)\). Trường hợp 1: \(\left\{ \begin{array}{l}{8^x} - {2^{{x^3} + 2}} \ge 0\\{\log _{\sqrt … [Đọc thêm...] vềCó bao nhiêu số nguyên \(x\) thỏa mãn \(\left( {{8^x} – {2^{{x^3} + 2}}} \right).\left[ {{{\log }_{\sqrt 3 }}\left( {2x + 21} \right) – 4} \right] \ge 0?\)

Cho các số thực dương \(a,\,\,\,b,\,\,x\) thỏa mãn \({\log _{\frac{1}{2}}}x = \frac{2}{3}{\log _{\frac{1}{2}}}a – \frac{1}{5}{\log _{\frac{1}{2}}}b\). Mệnh đề nào dưới đây đúng?

Ngày 16/07/2021 Thuộc chủ đề:Trắc nghiệm Phương trình và bất phương trình Logarit, Trắc nghiệm Phương trình và bất phương trình mũ Tag với:Pt mu va Logarit VDC, TN THPT 2021

Câu hỏi: Cho các số thực dương \(a,\,\,\,b,\,\,x\) thỏa mãn \({\log _{\frac{1}{2}}}x = \frac{2}{3}{\log _{\frac{1}{2}}}a - \frac{1}{5}{\log _{\frac{1}{2}}}b\). Mệnh đề nào dưới đây đúng? A. \(x = {a^{\frac{2}{3}}}{b^{\frac{1}{5}}}\). B. \(x = \frac{2}{3}a - \frac{1}{5}b\). C. \(x = {a^{\frac{2}{3}}}{b^{\frac{{ - 1}}{5}}}\). D. \(x = {a^{\frac{3}{2}}}{b^{ - … [Đọc thêm...] vềCho các số thực dương \(a,\,\,\,b,\,\,x\) thỏa mãn \({\log _{\frac{1}{2}}}x = \frac{2}{3}{\log _{\frac{1}{2}}}a – \frac{1}{5}{\log _{\frac{1}{2}}}b\). Mệnh đề nào dưới đây đúng?

  • « Chuyển đến Trang trước
  • Trang 1
  • Interim pages omitted …
  • Trang 3
  • Trang 4
  • Trang 5
  • Trang 6
  • Trang 7
  • Interim pages omitted …
  • Trang 16
  • Chuyển đến Trang sau »

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.