Biết \(\int\limits_0^\pi {\left( {3x + 2} \right){{\cos }^2}x\,{\rm{d}}x} = \frac{a}{b}{\pi ^2} + c\pi \) (với \(a,\,b,\,c\) là các số tự nhiên, \(\frac{a}{b}\) là phân số tối giản). Giá trị của \(a + b + c\)bằng A. \(6\). B. \(8\). C. \(5\). D. \(4\). Lời giải: Đặt \(I = \int\limits_0^\pi {\left( {3x + 2} \right){{\cos }^2}x\,{\rm{d}}x} \). Ta có: \(I = … [Đọc thêm...] vềBiết \(\int\limits_0^\pi {\left( {3x + 2} \right){{\cos }^2}x\,{\rm{d}}x} = \frac{a}{b}{\pi ^2} + c\pi \) (với \(a,\,b,\,c\) là các số tự nhiên, \(\frac{a}{b}\) là phân số tối giản). Giá trị của \(a + b + c\)bằng
Trắc nghiệm Nguyên hàm
Biết \(f\left( x \right) = \int {{x^3}{e^{{x^2} + 1}}dx} \) và \(f\left( 0 \right) = – \frac{1}{2}e\). Khi đó \(f\left( 1 \right)\) bằng
Biết \(f\left( x \right) = \int {{x^3}{e^{{x^2} + 1}}dx} \) và \(f\left( 0 \right) = - \frac{1}{2}e\). Khi đó \(f\left( 1 \right)\) bằng A. \( - \frac{1}{2}{e^2}\). B. \(\frac{1}{2}e\). C. \(0\). D. \(\frac{1}{2}{e^2}\). Lời giải: Đặt \(t = {x^2} + 1 \Rightarrow dt = 2xdx \Rightarrow xdx = \frac{1}{2}dt\). Lại có \(t = {x^2} + 1 \Rightarrow {x^2} = t - … [Đọc thêm...] vềBiết \(f\left( x \right) = \int {{x^3}{e^{{x^2} + 1}}dx} \) và \(f\left( 0 \right) = – \frac{1}{2}e\). Khi đó \(f\left( 1 \right)\) bằng
Cho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\) thỏa mãn các điều kiện: \(f\left( 0 \right) = 2\sqrt 2 ,\) \(f\left( x \right) > 0,\) \(\forall x \in \mathbb{R}\) và \(f\left( x \right).f’\left( x \right) = \left( {2x + 1} \right)\sqrt {1 + {f^2}\left( x \right)} ,\) \(\forall x \in \mathbb{R}\). Khi đó giá trị \(f\left( 1 \right)\) bằng
Cho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\) thỏa mãn các điều kiện: \(f\left( 0 \right) = 2\sqrt 2 ,\) \(f\left( x \right) > 0,\) \(\forall x \in \mathbb{R}\) và \(f\left( x \right).f'\left( x \right) = \left( {2x + 1} \right)\sqrt {1 + {f^2}\left( x \right)} ,\) \(\forall x \in \mathbb{R}\). Khi đó giá trị \(f\left( 1 \right)\) bằng A. \(\sqrt {26} … [Đọc thêm...] vềCho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\) thỏa mãn các điều kiện: \(f\left( 0 \right) = 2\sqrt 2 ,\) \(f\left( x \right) > 0,\) \(\forall x \in \mathbb{R}\) và \(f\left( x \right).f’\left( x \right) = \left( {2x + 1} \right)\sqrt {1 + {f^2}\left( x \right)} ,\) \(\forall x \in \mathbb{R}\). Khi đó giá trị \(f\left( 1 \right)\) bằng
Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}3{x^2} + 2x + m\,\,khi\,\,x \ge 1\\5 – 2x\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,khi\,\,x < 1\end{array} \right.\) (\(m\) là tham số thực). Biết rằng \(f\left( x \right)\) có nguyên hàm trên \(\mathbb{R}\) là \(F\left( x \right)\) thỏa mãn \(F\left( { – 2} \right) = – 10\). Khi đó \(F\left( 3 \right)\) bằng
Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}3{x^2} + 2x + m\,\,khi\,\,x \ge 1\\5 - 2x\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,khi\,\,x < 1\end{array} \right.\) (\(m\) là tham số thực). Biết rằng \(f\left( x \right)\) có nguyên hàm trên \(\mathbb{R}\) là \(F\left( x \right)\) thỏa mãn \(F\left( { - 2} \right) = - 10\). Khi đó \(F\left( 3 \right)\) bằng A. \(36 + … [Đọc thêm...] vềCho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}3{x^2} + 2x + m\,\,khi\,\,x \ge 1\\5 – 2x\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,khi\,\,x < 1\end{array} \right.\) (\(m\) là tham số thực). Biết rằng \(f\left( x \right)\) có nguyên hàm trên \(\mathbb{R}\) là \(F\left( x \right)\) thỏa mãn \(F\left( { – 2} \right) = – 10\). Khi đó \(F\left( 3 \right)\) bằng
Biết \(I = \int\limits_1^{\sqrt[4]{3}} {\frac{1}{{x({x^4} + 1)}}} dx = \frac{1}{a}\ln \frac{b}{c}\) với \(a,{\rm{ }}b,{\rm{ }}c \in {\mathbb{N}^ * }\) và \(\frac{b}{c}\) là phân số tối giản. Tính \(T = ab
C.\)
Biết \(I = \int\limits_1^{\sqrt[4]{3}} {\frac{1}{{x({x^4} + 1)}}} dx = \frac{1}{a}\ln \frac{b}{c}\) với \(a,{\rm{ }}b,{\rm{ }}c \in {\mathbb{N}^ * }\) và \(\frac{b}{c}\) là phân số tối giản. Tính \(T = ab C.\) A. \(T = 24\). B. \(P = 12\). C. \(T = 30\). D. \(T = - 24\). Lời giải Đặt \(t = {x^4} \Rightarrow dt = 4{x^3}dx\). Khi \(x = 1\) thì \(t = 1\), … [Đọc thêm...] vềBiết \(I = \int\limits_1^{\sqrt[4]{3}} {\frac{1}{{x({x^4} + 1)}}} dx = \frac{1}{a}\ln \frac{b}{c}\) với \(a,{\rm{ }}b,{\rm{ }}c \in {\mathbb{N}^ * }\) và \(\frac{b}{c}\) là phân số tối giản. Tính \(T = ab
C.\)
Biết \(\int\limits_0^1 {\sqrt {\frac{{2 + x}}{{2 – x}}} dx} = \frac{\pi }{a} + b\sqrt 3 + c\) với \(a,{\rm{ }}b,{\rm{ }}c \in \mathbb{Z}\). Tính \(P = a + b +
C.\)
Biết \(\int\limits_0^1 {\sqrt {\frac{{2 + x}}{{2 - x}}} dx} = \frac{\pi }{a} + b\sqrt 3 + c\) với \(a,{\rm{ }}b,{\rm{ }}c \in \mathbb{Z}\). Tính \(P = a + b + C.\) A. \(P = - 3\). B. \(P = - 2\). C. \(P = 2\). D. \(P = 1\). Lời giải Đặt \(x = 2\cos 2t\) với \(t \in \left[ {0;\frac{\pi }{4}} \right]\). Suy ra \({\rm{d}}x = - 4\sin 2t{\rm{d}}t.\) Khi \(x … [Đọc thêm...] vềBiết \(\int\limits_0^1 {\sqrt {\frac{{2 + x}}{{2 – x}}} dx} = \frac{\pi }{a} + b\sqrt 3 + c\) với \(a,{\rm{ }}b,{\rm{ }}c \in \mathbb{Z}\). Tính \(P = a + b +
C.\)
Biết \(I = \int\limits_1^3 {\frac{{3 + \ln x}}{{{{\left( {x + 1} \right)}^2}}}\,} {\rm{d}}x\)\( = a\left( {1 + \ln 3} \right) – b\ln 2\), \(\left( {a\,,\,b \in \mathbb{Q}} \right)\). Giá trị của biểu thức
\(T = {a^2} + {b^2}\) là:
Biết \(I = \int\limits_1^3 {\frac{{3 + \ln x}}{{{{\left( {x + 1} \right)}^2}}}\,} {\rm{d}}x\)\( = a\left( {1 + \ln 3} \right) - b\ln 2\), \(\left( {a\,,\,b \in \mathbb{Q}} \right)\). Giá trị của biểu thức \(T = {a^2} + {b^2}\) là: A. \(T = \frac{{25}}{{16}}.\) B. \(T = \frac{9}{{16}}.\) C. \(T = \frac{{16}}{{25}}.\) D. \(T = \frac{{16}}{9}.\) Lời … [Đọc thêm...] vềBiết \(I = \int\limits_1^3 {\frac{{3 + \ln x}}{{{{\left( {x + 1} \right)}^2}}}\,} {\rm{d}}x\)\( = a\left( {1 + \ln 3} \right) – b\ln 2\), \(\left( {a\,,\,b \in \mathbb{Q}} \right)\). Giá trị của biểu thức
\(T = {a^2} + {b^2}\) là:
Biết \(I = \int\limits_0^4 {x\ln \left( {{x^2} + 9} \right)} {\rm{d}}x = a\ln 5 + b\ln 3 + c\) trong đó \(a\), \(b\), \(c\) là các số nguyên .
Tính giá trị của biểu thức \(T = a + b + c\).
Biết \(I = \int\limits_0^4 {x\ln \left( {{x^2} + 9} \right)} {\rm{d}}x = a\ln 5 + b\ln 3 + c\) trong đó \(a\), \(b\), \(c\) là các số nguyên . Tính giá trị của biểu thức \(T = a + b + c\). A. \(T = 9\). B. \(T = 11\). C. \(T = 8\). D. \(T = 10\). Lời giải: Đặt \(\left\{ {\begin{array}{*{20}{c}}{u = \ln \left( {{x^2} + 9} \right)}\\{{\rm{d}}v = … [Đọc thêm...] vềBiết \(I = \int\limits_0^4 {x\ln \left( {{x^2} + 9} \right)} {\rm{d}}x = a\ln 5 + b\ln 3 + c\) trong đó \(a\), \(b\), \(c\) là các số nguyên .
Tính giá trị của biểu thức \(T = a + b + c\).
Giả sử tích phân \(I = \int\limits_{ – \frac{\pi }{2}}^{\frac{\pi }{2}} {\frac{{{x^2} + \cos x}}{{1 + {3^x}}}dx} = a{\pi ^3} + b\pi + c\), trong đó \(a,b,c \in \mathbb{Q}\). Tính \(S = 8a + 4b + c\)
Giả sử tích phân \(I = \int\limits_{ - \frac{\pi }{2}}^{\frac{\pi }{2}} {\frac{{{x^2} + \cos x}}{{1 + {3^x}}}dx} = a{\pi ^3} + b\pi + c\), trong đó \(a,b,c \in \mathbb{Q}\). Tính \(S = 8a + 4b + c\) A.\(S = \frac{5}{3}\). B. \(S = \frac{4}{3}\). C. \(S = \frac{8}{3}\). D. \(S = \frac{2}{3}\). Lời giải: Đặt \(t = - x \Rightarrow dt = - dx\) Đổi cận: Với … [Đọc thêm...] vềGiả sử tích phân \(I = \int\limits_{ – \frac{\pi }{2}}^{\frac{\pi }{2}} {\frac{{{x^2} + \cos x}}{{1 + {3^x}}}dx} = a{\pi ^3} + b\pi + c\), trong đó \(a,b,c \in \mathbb{Q}\). Tính \(S = 8a + 4b + c\)
Biết\(I = \int\limits_0^{\frac{\pi }{2}} {\frac{{{{\sin }^{2023}}x}}{{{{\sin }^{2023}}x + {{\cos }^{2023}}x}}{\rm{d}}x} = a\frac{\pi }{4} + b\) với \(a,b \in \mathbb{Z}\). Giá trị của biểu thức \(T = {a^2} + {b^2}\) bằng
Biết\(I = \int\limits_0^{\frac{\pi }{2}} {\frac{{{{\sin }^{2023}}x}}{{{{\sin }^{2023}}x + {{\cos }^{2023}}x}}{\rm{d}}x} = a\frac{\pi }{4} + b\) với \(a,b \in \mathbb{Z}\). Giá trị của biểu thức \(T = {a^2} + {b^2}\) bằng A. \(1\). B. \(4\). C. \(5\). D. \(10\). Lời giải: Xét \(I = \int\limits_0^{\frac{\pi }{2}} {\frac{{{{\sin }^{2023}}x}}{{{{\sin }^{2023}}x + … [Đọc thêm...] vềBiết\(I = \int\limits_0^{\frac{\pi }{2}} {\frac{{{{\sin }^{2023}}x}}{{{{\sin }^{2023}}x + {{\cos }^{2023}}x}}{\rm{d}}x} = a\frac{\pi }{4} + b\) với \(a,b \in \mathbb{Z}\). Giá trị của biểu thức \(T = {a^2} + {b^2}\) bằng