Câu hỏi:
Trong không gian \(Oxyz\), cho 2 véc tơ \(\overrightarrow a = \left( { - 2;2; - 4} \right)\) và \(\overrightarrow b = \left( { - 3;3; - 6} \right)\). Khẳng định nào sau đây đúng?
A. \(2\overrightarrow b = 3\overrightarrow a \).
B. \(2\overrightarrow a = 3\overrightarrow b \).
C. \( - 2\overrightarrow a = 3\overrightarrow b \).
D. \( - 2\overrightarrow … [Đọc thêm...] về Trong không gian \(Oxyz\), cho 2 véc tơ \(\overrightarrow a = \left( { – 2;2; – 4} \right)\) và \(\overrightarrow b = \left( { – 3;3; – 6} \right)\). Khẳng định nào sau đây đúng?
Trắc nghiệm Hình học OXYZ
Trong không gian với hệ tọa độ Oxyz, cho \(\overrightarrow {OA} = 2\overrightarrow i + 3\overrightarrow j – 5\overrightarrow k ;{\rm{ }}\overrightarrow {OB} = – 2\overrightarrow j – 4\overrightarrow k \). Tìm một vectơ chỉ phương của đường thẳng \(AB\).
Câu hỏi:
Trong không gian với hệ tọa độ Oxyz, cho \(\overrightarrow {OA} = 2\overrightarrow i + 3\overrightarrow j - 5\overrightarrow k ;{\rm{ }}\overrightarrow {OB} = - 2\overrightarrow j - 4\overrightarrow k \). Tìm một vectơ chỉ phương của đường thẳng \(AB\).
A. \(\overrightarrow u = \left( {2;5; - 1} \right)\).
B. \(\overrightarrow u = \left( {2;3; - 5} … [Đọc thêm...] về Trong không gian với hệ tọa độ Oxyz, cho \(\overrightarrow {OA} = 2\overrightarrow i + 3\overrightarrow j – 5\overrightarrow k ;{\rm{ }}\overrightarrow {OB} = – 2\overrightarrow j – 4\overrightarrow k \). Tìm một vectơ chỉ phương của đường thẳng \(AB\).
Trong không gian với hệ tọa độ \(Oxyz\), cho điểm \(A\left( {0\;;\;8\;;\;2} \right)\) và mặt cầu có phương trình \(\left( S \right):{\left( {x – 5} \right)^2} + {\left( {y + 3} \right)^2} + {\left( {z – 7} \right)^2} = 72\)và điểm \(B\left( {9\;;\; – 7\;;\;23} \right)\). Viết phương trình mặt phẳng \(\left( P \right)\) qua \(A\) và tiếp xúc với \(\left( S \right)\)sao cho khoảng cách từ \(B\) đến \(\left( P \right)\) lớn nhất. Giả sử \(\overrightarrow n = \left( {1\;;\;m\;;\;n} \right)\)là một véc tơ pháp tuyến của \(\left( P \right)\), hãy tính tích \(m.n\) biết \(m\,,\,n\) là các số nguyên.
Câu hỏi:
Trong không gian với hệ tọa độ \(Oxyz\), cho điểm \(A\left( {0\;;\;8\;;\;2} \right)\) và mặt cầu có phương trình \(\left( S \right):{\left( {x - 5} \right)^2} + {\left( {y + 3} \right)^2} + {\left( {z - 7} \right)^2} = 72\)và điểm \(B\left( {9\;;\; - 7\;;\;23} \right)\). Viết phương trình mặt phẳng \(\left( P \right)\) qua \(A\) và tiếp xúc với \(\left( S … [Đọc thêm...] về Trong không gian với hệ tọa độ \(Oxyz\), cho điểm \(A\left( {0\;;\;8\;;\;2} \right)\) và mặt cầu có phương trình \(\left( S \right):{\left( {x – 5} \right)^2} + {\left( {y + 3} \right)^2} + {\left( {z – 7} \right)^2} = 72\)và điểm \(B\left( {9\;;\; – 7\;;\;23} \right)\). Viết phương trình mặt phẳng \(\left( P \right)\) qua \(A\) và tiếp xúc với \(\left( S \right)\)sao cho khoảng cách từ \(B\) đến \(\left( P \right)\) lớn nhất. Giả sử \(\overrightarrow n = \left( {1\;;\;m\;;\;n} \right)\)là một véc tơ pháp tuyến của \(\left( P \right)\), hãy tính tích \(m.n\) biết \(m\,,\,n\) là các số nguyên.
Câu 76: Tìm tất cả các giá trị của \(m\) để mặt phẳng \(\left( P \right):2x – y – 2z + 3m – 3 = 0\) cắt mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} + 2x – 4z = 0\) theo giao tuyến là một đường tròn có bán kính bằng 1
Câu hỏi:
Câu 76: Tìm tất cả các giá trị của \(m\) để mặt phẳng \(\left( P \right):2x - y - 2z + 3m - 3 = 0\) cắt mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} + 2x - 4z = 0\) theo giao tuyến là một đường tròn có bán kính bằng 1
A. \(\left[ \begin{array}{l}m = 1\\m = 5\end{array} \right.\).
B. \(\left[ \begin{array}{l}m < 1\\m > 5\end{array} \right.\).
C. … [Đọc thêm...] về Câu 76: Tìm tất cả các giá trị của \(m\) để mặt phẳng \(\left( P \right):2x – y – 2z + 3m – 3 = 0\) cắt mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} + 2x – 4z = 0\) theo giao tuyến là một đường tròn có bán kính bằng 1
Trong không gian \(Oxyz\), cho mặt cầu \(\left( {{S_1}} \right)\) có tâm \(A\left( {1;2;1} \right)\), \({R_1} = 2\) và mặt cầu \(\left( {{S_2}} \right)\) có tâm \(B\left( { – 2; – 2;1} \right)\), \({R_1} = 3\). Viết phương trình mặt phẳng \(\left( P \right)\) tiếp xúc với cả hai mặt cầu \(\left( {{S_1}} \right)\), \(\left( {{S_2}} \right)\) đồng thời \(\left( P \right)\) cách điểm \(M\left( {7;10;1} \right)\) một khoảng lớn nhất.
Câu hỏi:
Trong không gian \(Oxyz\), cho mặt cầu \(\left( {{S_1}} \right)\) có tâm \(A\left( {1;2;1} \right)\), \({R_1} = 2\) và mặt cầu \(\left( {{S_2}} \right)\) có tâm \(B\left( { - 2; - 2;1} \right)\), \({R_1} = 3\). Viết phương trình mặt phẳng \(\left( P \right)\) tiếp xúc với cả hai mặt cầu \(\left( {{S_1}} \right)\), \(\left( {{S_2}} \right)\) đồng thời \(\left( P … [Đọc thêm...] về Trong không gian \(Oxyz\), cho mặt cầu \(\left( {{S_1}} \right)\) có tâm \(A\left( {1;2;1} \right)\), \({R_1} = 2\) và mặt cầu \(\left( {{S_2}} \right)\) có tâm \(B\left( { – 2; – 2;1} \right)\), \({R_1} = 3\). Viết phương trình mặt phẳng \(\left( P \right)\) tiếp xúc với cả hai mặt cầu \(\left( {{S_1}} \right)\), \(\left( {{S_2}} \right)\) đồng thời \(\left( P \right)\) cách điểm \(M\left( {7;10;1} \right)\) một khoảng lớn nhất.
Câu 39: Trong không gian với hệ toạ độ \(Oxyz\) cho ba điểm \(A\left( {1; – 2;1} \right);{\rm{ }}B\left( { – 3;1;0} \right)\) và \(C\left( {2;m; – 5} \right)\). Tìm \(m\) biết tam giác \(ABC\) vuông tại \(A\).
Câu hỏi:
Câu 39: Trong không gian với hệ toạ độ \(Oxyz\) cho ba điểm \(A\left( {1; - 2;1} \right);{\rm{ }}B\left( { - 3;1;0} \right)\) và \(C\left( {2;m; - 5} \right)\). Tìm \(m\) biết tam giác \(ABC\) vuông tại \(A\).
A. \(m = \frac{8}{3}\).
B. \(m = \frac{4}{3}\).
C. \(m = - \frac{4}{3}\). \(\)
D. \(m = - \frac{8}{3}\).
Lời giải
Ta có \(\overrightarrow … [Đọc thêm...] về Câu 39: Trong không gian với hệ toạ độ \(Oxyz\) cho ba điểm \(A\left( {1; – 2;1} \right);{\rm{ }}B\left( { – 3;1;0} \right)\) và \(C\left( {2;m; – 5} \right)\). Tìm \(m\) biết tam giác \(ABC\) vuông tại \(A\).
Trong không gian tọa độ \(Oxyz,\) mặt phẳng song song với mặt phẳng \(\left( {Oyz} \right)\) và đi qua điểm \(A\left( {4;2; – 5} \right)\) có phương trình
Câu hỏi:
Trong không gian tọa độ \(Oxyz,\) mặt phẳng song song với mặt phẳng \(\left( {Oyz} \right)\) và đi qua điểm \(A\left( {4;2; - 5} \right)\) có phương trình
A. \(2y - 5z = 0.\)
B. \(x - 4 = 0.\)
C. \(y - 2 = 0.\)
D. \(z + 5 = 0.\)
Lời giải
Mặt phẳng \(\left( {Oyz} \right)\) có một VTPT là \(\overrightarrow i = \left( {1;0;0} \right).\)
Mặt phẳng … [Đọc thêm...] về Trong không gian tọa độ \(Oxyz,\) mặt phẳng song song với mặt phẳng \(\left( {Oyz} \right)\) và đi qua điểm \(A\left( {4;2; – 5} \right)\) có phương trình
Trong không gian \(Oxyz\), cho các điểm \(A\left( {1; – 2;3} \right),\;B\left( {0;1; – 2} \right),\;E\left( {3;2;2} \right)\). Gọi \(C\left( {m;n;p} \right)\) là điểm thỏa mãn \(E\) là trọng tâm của tam giác \(ABC\). Tổng \(m + n + p\) bằng
Câu hỏi:
Trong không gian \(Oxyz\), cho các điểm \(A\left( {1; - 2;3} \right),\;B\left( {0;1; - 2} \right),\;E\left( {3;2;2} \right)\). Gọi \(C\left( {m;n;p} \right)\) là điểm thỏa mãn \(E\) là trọng tâm của tam giác \(ABC\). Tổng \(m + n + p\) bằng
A. \(13\).
B. \(15\).
C. \(\frac{{10}}{3}\).
D. \(20\).
Lời giải
Vì \(E\) là trọng tâm của tam giác \(ABC\) … [Đọc thêm...] về Trong không gian \(Oxyz\), cho các điểm \(A\left( {1; – 2;3} \right),\;B\left( {0;1; – 2} \right),\;E\left( {3;2;2} \right)\). Gọi \(C\left( {m;n;p} \right)\) là điểm thỏa mãn \(E\) là trọng tâm của tam giác \(ABC\). Tổng \(m + n + p\) bằng
Trong không gian với hệ tọa độ Oxyz, vectơ nào là một vectơ chỉ phương của đường thẳng có phương trình \(\frac{{x – 1}}{3} = \frac{{3y}}{2} = \frac{{3 – z}}{1}\)?
Câu hỏi:
Trong không gian với hệ tọa độ Oxyz, vectơ nào là một vectơ chỉ phương của đường thẳng có phương trình \(\frac{{x - 1}}{3} = \frac{{3y}}{2} = \frac{{3 - z}}{1}\)?
A. \(\overrightarrow a = \left( {3;\frac{3}{2};1} \right)\).
B. \(\overrightarrow a = \left( {9;2; - 3} \right)\).
C. \(\overrightarrow a = \left( {3;2;1} \right)\).
D. \(\overrightarrow a = … [Đọc thêm...] về Trong không gian với hệ tọa độ Oxyz, vectơ nào là một vectơ chỉ phương của đường thẳng có phương trình \(\frac{{x – 1}}{3} = \frac{{3y}}{2} = \frac{{3 – z}}{1}\)?
Mặt phẳng \(\left( P \right)\) đi qua \(A\left( {2;1;2} \right),B\left( {3;0;3} \right)\) sao cho \(\left( P \right):ax + by + cz + d = 0\) (\(a,c \in Z;\frac{a}{c}\)tối giản) cắt các trục tọa độ \(Ox,Oz\) lần lượt tại hai điểm phân biệt \(P\),\(Q\) thỏa mãn: \(3OP = 2OQ.\) Giá trị nhỏ nhất của \(a + b + c + d\).
Câu hỏi:
Mặt phẳng \(\left( P \right)\) đi qua \(A\left( {2;1;2} \right),B\left( {3;0;3} \right)\) sao cho \(\left( P \right):ax + by + cz + d = 0\) (\(a,c \in Z;\frac{a}{c}\)tối giản) cắt các trục tọa độ \(Ox,Oz\) lần lượt tại hai điểm phân biệt \(P\),\(Q\) thỏa mãn: \(3OP = 2OQ.\) Giá trị nhỏ nhất của \(a + b + c + d\).
A. \( - 1\).
B. \( - 5\).
C. \( - … [Đọc thêm...] về Mặt phẳng \(\left( P \right)\) đi qua \(A\left( {2;1;2} \right),B\left( {3;0;3} \right)\) sao cho \(\left( P \right):ax + by + cz + d = 0\) (\(a,c \in Z;\frac{a}{c}\)tối giản) cắt các trục tọa độ \(Ox,Oz\) lần lượt tại hai điểm phân biệt \(P\),\(Q\) thỏa mãn: \(3OP = 2OQ.\) Giá trị nhỏ nhất của \(a + b + c + d\).