• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán

Kết quả tìm kiếm cho: ty so

89. Một khối cầu có bán kính là \(5\left( {dm} \right)\), người ta cắt bỏ hai phần của khối cầu bằng hai mặt phẳng song song cùng vuông góc đường kính và cách tâm một khoảng \(3\left( {dm} \right)\) để làm một chiếc lu đựng nước . Tính thể tích mà chiếc lu chứa được. 

Description: D:\luyen thi thpt quoc gia\vận dụng cao oke\HINH-P8\HINH P8\H10.png

Ngày 16/03/2022 Thuộc chủ đề:Trắc nghiệm Ứng dụng Tích phân Tag với:Trắc nghiệm ứng dụng tích phân diện tích hình phẳng

Câu hỏi: 89. Một khối cầu có bán kính là \(5\left( {dm} \right)\), người ta cắt bỏ hai phần của khối cầu bằng hai mặt phẳng song song cùng vuông góc đường kính và cách tâm một khoảng \(3\left( {dm} \right)\) để làm một chiếc lu đựng nước . Tính thể tích mà chiếc lu chứa được.  A. \(\frac{{100}}{3}\pi \left( {d{m^3}} \right)\). B. \(\frac{{43}}{3}\pi \left( … [Đọc thêm...] về89. Một khối cầu có bán kính là \(5\left( {dm} \right)\), người ta cắt bỏ hai phần của khối cầu bằng hai mặt phẳng song song cùng vuông góc đường kính và cách tâm một khoảng \(3\left( {dm} \right)\) để làm một chiếc lu đựng nước . Tính thể tích mà chiếc lu chứa được. 

Description: D:\luyen thi thpt quoc gia\vận dụng cao oke\HINH-P8\HINH P8\H10.png

48. Cho \(F\left( x \right)\) là một nguyên hàm của hàm số \(y = \frac{{{e^x}}}{x}\) trên khoảng \(\left( {0; + \infty } \right)\). 

Tích phân \(I = \int\limits_1^2 {\frac{{{e^{3x}}}}{x}{\rm{d}}x} \) bằng giá trị nào sau đây?

Ngày 14/03/2022 Thuộc chủ đề:Trắc nghiệm Tích phân Tag với:Trắc nghiệm tích phân Thông hiểu

Câu hỏi: 48. Cho \(F\left( x \right)\) là một nguyên hàm của hàm số \(y = \frac{{{e^x}}}{x}\) trên khoảng \(\left( {0; + \infty } \right)\).  Tích phân \(I = \int\limits_1^2 {\frac{{{e^{3x}}}}{x}{\rm{d}}x} \) bằng giá trị nào sau đây? A. \(\frac{{F\left( 6 \right) - F\left( 3 \right)}}{3}\). B. \(F\left( 6 \right) - F\left( 3 \right)\).  C. \(3\left[ … [Đọc thêm...] về48. Cho \(F\left( x \right)\) là một nguyên hàm của hàm số \(y = \frac{{{e^x}}}{x}\) trên khoảng \(\left( {0; + \infty } \right)\). 

Tích phân \(I = \int\limits_1^2 {\frac{{{e^{3x}}}}{x}{\rm{d}}x} \) bằng giá trị nào sau đây?

Hàm số nào dưới đây không là nguyên hàm của hàm số \(\displaystyle  f\left( x \right) = \frac{{x\left( {2 + x} \right)}}{{{{\left( {x + 1} \right)}^2}}}\)?

Ngày 04/02/2022 Thuộc chủ đề:Trắc nghiệm Nguyên hàm Tag với:Nguyên hàm nhận biết

Câu hỏi: Hàm số nào dưới đây không là nguyên hàm của hàm số \(\displaystyle  f\left( x \right) = \frac{{x\left( {2 + x} \right)}}{{{{\left( {x + 1} \right)}^2}}}\)? A. \(\displaystyle  \frac{{{x^2} + x - 1}}{{x + 1}}\) B. \(\displaystyle  \frac{{{x^2} - x - 1}}{{x + 1}}\) C. \(\displaystyle  \frac{{{x^2} + x + 1}}{{x + 1}}\) D. \(\displaystyle  \frac{{{x^2}}}{{x + … [Đọc thêm...] vềHàm số nào dưới đây không là nguyên hàm của hàm số \(\displaystyle  f\left( x \right) = \frac{{x\left( {2 + x} \right)}}{{{{\left( {x + 1} \right)}^2}}}\)?

Tìm nguyên hàm của hàm số \(f(x)= {3\cos x + \frac{1}{{{x^2}}}}\) trên \(( 0; ,+\infty)\)

Ngày 03/02/2022 Thuộc chủ đề:Trắc nghiệm Nguyên hàm Tag với:Nguyên hàm nhận biết

Câu hỏi: Tìm nguyên hàm của hàm số \(f(x)= {3\cos x + \frac{1}{{{x^2}}}}\) trên \(( 0; ,+\infty)\) A. \( - 3\sin x + \frac{1}{x} + C\) B. \( - 3\sin x - \frac{1}{x} + C\) C. \( 3\cos x + \frac{1}{x} + C\) D. \(3cos x +ln x + C\) Lời Giải: Đây là các câu trắc nghiệm về NGUYÊN HÀM mức độ 1,2 \( \smallint f\left( x \right){\rm{d}}x = \smallint \left( {3\cos x + … [Đọc thêm...] vềTìm nguyên hàm của hàm số \(f(x)= {3\cos x + \frac{1}{{{x^2}}}}\) trên \(( 0; ,+\infty)\)

Số giá trị nguyên của tham số\(m\) để phương trình

\(\sqrt {\log _2^2x + 3{{\log }_{\frac{1}{2}}}{x^2} – 7} = m\left( {{{\log }_4}{x^2} – 7} \right)\) có nghiệm thuộc khoảng \(\left( {256;\, + \infty } \right)\)là:

Ngày 21/10/2021 Thuộc chủ đề:Trắc nghiệm Phương trình và bất phương trình Logarit Tag với:Ham so Logarit VDC

Câu hỏi: Số giá trị nguyên của tham số\(m\) để phương trình \(\sqrt {\log _2^2x + 3{{\log }_{\frac{1}{2}}}{x^2} - 7} = m\left( {{{\log }_4}{x^2} - 7} \right)\) có nghiệm thuộc khoảng \(\left( {256;\, + \infty } \right)\)là: A. vô số. B. \(4\). C. \(3\). D. \(1\). Lời giải Điều kiện xác định: \(\left\{ \begin{array}{l}x > 0\\{x^2} > 0\\\log _2^2x + … [Đọc thêm...] về

Số giá trị nguyên của tham số\(m\) để phương trình

\(\sqrt {\log _2^2x + 3{{\log }_{\frac{1}{2}}}{x^2} – 7} = m\left( {{{\log }_4}{x^2} – 7} \right)\) có nghiệm thuộc khoảng \(\left( {256;\, + \infty } \right)\)là:

. Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình vẽ

C:\Users\Win 8.1 VS8 X64\Desktop\bbbb.jpg

Biết \(f\left( { – 3} \right) = – 10\). Có bao nhiêu giá trị nguyên của \(m\) để phương trình \(f\left( {f\left( {2 + f\left( {{e^x}} \right)} \right)} \right) = m\)có bốn nghiệm .

Ngày 21/10/2021 Thuộc chủ đề:Trắc nghiệm Phương trình và bất phương trình Logarit Tag với:Ham so Logarit VDC

Câu hỏi: . Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình vẽ Biết \(f\left( { - 3} \right) = - 10\). Có bao nhiêu giá trị nguyên của \(m\) để phương trình \(f\left( {f\left( {2 + f\left( {{e^x}} \right)} \right)} \right) = m\)có bốn nghiệm . A. \(6\). B. \(7\). C. \(5\). D. \(10\). Lời giải Đặt \({e^x} = t \Rightarrow t' = {e^x} > 0\forall x … [Đọc thêm...] về

. Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình vẽ

C:\Users\Win 8.1 VS8 X64\Desktop\bbbb.jpg

Biết \(f\left( { – 3} \right) = – 10\). Có bao nhiêu giá trị nguyên của \(m\) để phương trình \(f\left( {f\left( {2 + f\left( {{e^x}} \right)} \right)} \right) = m\)có bốn nghiệm .

Có bao nhiêu giá trị nguyên của tham số \(m\) thuộc khoảng \(\left( { – 2020;\,\,2020} \right)\) để hàm số \(y = \log \left[ {{{\log }_{2020}}\left( {{x^2} + 3{m^2}x + {{2020}^x} – 2m – 2021} \right)} \right]\) xác định với mọi \(x\) thuộc \(\left( {1;\, + \infty } \right)\)?

Ngày 20/10/2021 Thuộc chủ đề:Trắc nghiệm Logarit và hàm số lôgarit Tag với:Ham so Logarit VDC

Câu hỏi: Có bao nhiêu giá trị nguyên của tham số \(m\) thuộc khoảng \(\left( { - 2020;\,\,2020} \right)\) để hàm số \(y = \log \left[ {{{\log }_{2020}}\left( {{x^2} + 3{m^2}x + {{2020}^x} - 2m - 2021} \right)} \right]\) xác định với mọi \(x\) thuộc \(\left( {1;\, + \infty } \right)\)? A. \(2019\). B. \(4040\). C. \(4038\). D. \(4037\). Lời giải Điều … [Đọc thêm...] về

Có bao nhiêu giá trị nguyên của tham số \(m\) thuộc khoảng \(\left( { – 2020;\,\,2020} \right)\) để hàm số \(y = \log \left[ {{{\log }_{2020}}\left( {{x^2} + 3{m^2}x + {{2020}^x} – 2m – 2021} \right)} \right]\) xác định với mọi \(x\) thuộc \(\left( {1;\, + \infty } \right)\)?

Cho hàm số \(f(x)\) liên tục trên \(\left( {0; + \infty } \right)\), thỏa mãn \(3x.f\left( x \right) – {x^2}.{f’}\left( x \right) = 2{f^2}\left( x \right),f(x) \ne 0\) với \(x \in \left( {0; + \infty } \right)\) và \(f(1) = \frac{1}{2}\). Gọi \(M\), \(m\) lần lượt là giá trị lớn nhất giá trị nhỏ nhất của hàm số \(y = f(x)\) trên đoạn \(\left[ {1;2} \right]\). Tính \(M + m\).

Ngày 09/10/2021 Thuộc chủ đề:Trắc nghiệm Giá trị lớn nhất và nhỏ nhất của hàm số Tag với:Trắc nghiệm GTLN GTNN vận dụng, VDC Toan 2023

Câu hỏi: Cho hàm số \(f(x)\) liên tục trên \(\left( {0; + \infty } \right)\), thỏa mãn \(3x.f\left( x \right) - {x^2}.{f'}\left( x \right) = 2{f^2}\left( x \right),f(x) \ne 0\) với \(x \in \left( {0; + \infty } \right)\) và \(f(1) = \frac{1}{2}\). Gọi \(M\), \(m\) lần lượt là giá trị lớn nhất giá trị nhỏ nhất của hàm số \(y = f(x)\) trên đoạn \(\left[ {1;2} \right]\). Tính … [Đọc thêm...] vềCho hàm số \(f(x)\) liên tục trên \(\left( {0; + \infty } \right)\), thỏa mãn \(3x.f\left( x \right) – {x^2}.{f’}\left( x \right) = 2{f^2}\left( x \right),f(x) \ne 0\) với \(x \in \left( {0; + \infty } \right)\) và \(f(1) = \frac{1}{2}\). Gọi \(M\), \(m\) lần lượt là giá trị lớn nhất giá trị nhỏ nhất của hàm số \(y = f(x)\) trên đoạn \(\left[ {1;2} \right]\). Tính \(M + m\).

Có bao nhiêu giá trị nguyên của tham số \(m \in \left[ {0;\,10} \right]\) để tập nghiệm của bất phương trình \(\sqrt {\log _2^2x + 3{{\log }_{\frac{1}{2}}}{x^2} – 7} < m\left( {{{\log }_4}{x^2} – 7} \right)\) chứa khoảng \(\left( {256;\, + \infty } \right)\).

Ngày 09/10/2021 Thuộc chủ đề:Trắc nghiệm Giá trị lớn nhất và nhỏ nhất của hàm số Tag với:Trắc nghiệm GTLN GTNN vận dụng

Câu hỏi: Có bao nhiêu giá trị nguyên của tham số \(m \in \left[ {0;\,10} \right]\) để tập nghiệm của bất phương trình \(\sqrt {\log _2^2x + 3{{\log }_{\frac{1}{2}}}{x^2} - 7} < m\left( {{{\log }_4}{x^2} - 7} \right)\) chứa khoảng \(\left( {256;\, + \infty } \right)\). A. \(7\). B. \(10\). C. \(8\). D. \(9\). Lời giải Chọn C Điều kiện: \(\left\{ … [Đọc thêm...] về

Có bao nhiêu giá trị nguyên của tham số \(m \in \left[ {0;\,10} \right]\) để tập nghiệm của bất phương trình \(\sqrt {\log _2^2x + 3{{\log }_{\frac{1}{2}}}{x^2} – 7} < m\left( {{{\log }_4}{x^2} – 7} \right)\) chứa khoảng \(\left( {256;\, + \infty } \right)\).

Một doanh nghiệp kinh doanh xe máy mỗi tháng bình quân bán được 1000 chiếc xe cùng loại với giá 35 triệu đồng mỗi chiếc. Để gia tăng lợi nhuận nên doanh nghiệp quyết định thay đổi giá bán. Theo thông kê của doanh nghiệp, nếu giảm giá 1 triệu đồng/chiếc thì doanh số sẽ tăng thêm 50 chiếc so với bình quân và ngược lại nếu tăng giá bán 1 triệu đồng/chiếc thì doanh số giảm tương ứng 50 chiếc so với bình quân, giá gốc mỗi chiếc xe là 30 triệu đồng, mỗi chiếc xe bán ra được hưởng chiếc khấu 8%(trên giá gốc) từ công ty. Hỏi doanh nghiệp phải bán với giá bao nhiêu để được lợi nhuận cao nhất.

Ngày 08/10/2021 Thuộc chủ đề:Trắc nghiệm Giá trị lớn nhất và nhỏ nhất của hàm số Tag với:Trắc nghiệm GTLN GTNN vận dụng, VDC Toan 2023

Câu hỏi: Một doanh nghiệp kinh doanh xe máy mỗi tháng bình quân bán được 1000 chiếc xe cùng loại với giá 35 triệu đồng mỗi chiếc. Để gia tăng lợi nhuận nên doanh nghiệp quyết định thay đổi giá bán. Theo thông kê của doanh nghiệp, nếu giảm giá 1 triệu đồng/chiếc thì doanh số sẽ tăng thêm 50 chiếc so với bình quân và ngược lại nếu tăng giá bán 1 triệu đồng/chiếc thì doanh số … [Đọc thêm...] về

Một doanh nghiệp kinh doanh xe máy mỗi tháng bình quân bán được 1000 chiếc xe cùng loại với giá 35 triệu đồng mỗi chiếc. Để gia tăng lợi nhuận nên doanh nghiệp quyết định thay đổi giá bán. Theo thông kê của doanh nghiệp, nếu giảm giá 1 triệu đồng/chiếc thì doanh số sẽ tăng thêm 50 chiếc so với bình quân và ngược lại nếu tăng giá bán 1 triệu đồng/chiếc thì doanh số giảm tương ứng 50 chiếc so với bình quân, giá gốc mỗi chiếc xe là 30 triệu đồng, mỗi chiếc xe bán ra được hưởng chiếc khấu 8%(trên giá gốc) từ công ty. Hỏi doanh nghiệp phải bán với giá bao nhiêu để được lợi nhuận cao nhất.

  • « Chuyển đến Trang trước
  • Trang 1
  • Interim pages omitted …
  • Trang 6
  • Trang 7
  • Trang 8
  • Trang 9
  • Trang 10
  • Interim pages omitted …
  • Trang 703
  • Chuyển đến Trang sau »

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.