• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Trắc nghiệm
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán

Kết quả tìm kiếm cho: 0a

(THPT Yên Phong 1 – Bắc Ninh – 2022) Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành. Gọi \(M\) là điểm di động trên cạnh \(AB\) và \(N\) là trung điểm \(SD\). Mặt phẳng \(\left( \alpha \right)\) đi qua \(M,\,N\) và song song \(BC\) chia khối chóp thành hai khối có tỉ lệ thể tích \(\frac{{{V_1}}}{{{V_2}}} = \frac{3}{5}\), trong đó \({V_1}\) là thể tích khối đa diện chứa đỉnh \(A\), \({V_2}\) là thể tích khối đa diện chứa đỉnh \(B\). Tỉ số \(\frac{{AM}}{{AB}}\) bằng

Ngày 19/06/2022 Thuộc chủ đề:Trắc nghiệm Thể tích đa diện Tag với:The tich da dien VDC, TN THPT 2022

Câu hỏi: (THPT Yên Phong 1 - Bắc Ninh - 2022) Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành. Gọi \(M\) là điểm di động trên cạnh \(AB\) và \(N\) là trung điểm \(SD\). Mặt phẳng \(\left( \alpha \right)\) đi qua \(M,\,N\) và song song \(BC\) chia khối chóp thành hai khối có tỉ lệ thể tích \(\frac{{{V_1}}}{{{V_2}}} = \frac{3}{5}\), trong đó \({V_1}\) là thể tích … [Đọc thêm...] về

(THPT Yên Phong 1 – Bắc Ninh – 2022) Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành. Gọi \(M\) là điểm di động trên cạnh \(AB\) và \(N\) là trung điểm \(SD\). Mặt phẳng \(\left( \alpha \right)\) đi qua \(M,\,N\) và song song \(BC\) chia khối chóp thành hai khối có tỉ lệ thể tích \(\frac{{{V_1}}}{{{V_2}}} = \frac{3}{5}\), trong đó \({V_1}\) là thể tích khối đa diện chứa đỉnh \(A\), \({V_2}\) là thể tích khối đa diện chứa đỉnh \(B\). Tỉ số \(\frac{{AM}}{{AB}}\) bằng

(Sở Hà Tĩnh 2022) Cho hàm số \(f\left( x \right) = a{x^4} – {x^3} + 2x + 2\) và hàm số \(g\left( x \right) = b{x^3} – c{x^2} + 2\) có đồ thị như hình vẽ bên. Gọi \({S_1};\,{S_2}\) là diện tích các hình phẳng gạch chéo trong hình vẽ, biết \({S_1} = \frac{{221}}{{640}}\). Khi đó \({S_2}\) bằng

Ngày 14/06/2022 Thuộc chủ đề:Trắc nghiệm Ứng dụng Tích phân Tag với:tich phan nang cao, Trắc nghiệm ứng dụng tích phân diện tích hình phẳng, VDC Toan 2022

Câu hỏi: (Sở Hà Tĩnh 2022) Cho hàm số \(f\left( x \right) = a{x^4} - {x^3} + 2x + 2\) và hàm số \(g\left( x \right) = b{x^3} - c{x^2} + 2\) có đồ thị như hình vẽ bên. Gọi \({S_1};\,{S_2}\) là diện tích các hình phẳng gạch chéo trong hình vẽ, biết \({S_1} = \frac{{221}}{{640}}\). Khi đó \({S_2}\) bằng A. \(\frac{{791}}{{640}}\). B. \(\frac{{571}}{{640}}\). C. … [Đọc thêm...] về

(Sở Hà Tĩnh 2022) Cho hàm số \(f\left( x \right) = a{x^4} – {x^3} + 2x + 2\) và hàm số \(g\left( x \right) = b{x^3} – c{x^2} + 2\) có đồ thị như hình vẽ bên. Gọi \({S_1};\,{S_2}\) là diện tích các hình phẳng gạch chéo trong hình vẽ, biết \({S_1} = \frac{{221}}{{640}}\). Khi đó \({S_2}\) bằng

(Đại học Hồng Đức – 2022) Cho \(x\) là số nguyên dương và \(y\) là số thự

C. Có tất cả bao nhiêu cặp số \((x;y)\) thỏa mãn \(\ln (1 + x + 2y) = 2y + 3x – 10?\)\(\)

Ngày 13/06/2022 Thuộc chủ đề:Trắc nghiệm Logarit và hàm số lôgarit Tag với:Trắc nghiệm HS mũ VDC 2022, Trắc nghiệm Logarit VDC 2022, VDC Toan 2022

Câu hỏi: (Đại học Hồng Đức – 2022) Cho \(x\) là số nguyên dương và \(y\) là số thự C. Có tất cả bao nhiêu cặp số \((x;y)\) thỏa mãn \(\ln (1 + x + 2y) = 2y + 3x - 10?\)\(\) A. \(10.\) B. Vô số. C. 11. D. 9. Lời giải:. Điều kiện: \(1 + x + 2y > 0 \Leftrightarrow y > - \frac{{x + 1}}{2}\). Ta luôn chứng minh được \({e^x} \ge x + 1,\forall x … [Đọc thêm...] về

(Đại học Hồng Đức – 2022) Cho \(x\) là số nguyên dương và \(y\) là số thự

C. Có tất cả bao nhiêu cặp số \((x;y)\) thỏa mãn \(\ln (1 + x + 2y) = 2y + 3x – 10?\)\(\)

(Sở Hà Tĩnh 2022) Có bao nhiêu giá trị nguyên của tham số \(m \in [ – 10;10]\) để phương trình

\({2^{{3^m}}} \cdot {7^{{x^2} – 2x}} + {7^{{3^m}}} \cdot {2^{{x^2} – 2x}} = {14^{{3^m}}}\left( {7{x^2} – 14x + 2 – 7 \cdot {3^m}} \right)\)\(\)

có bốn nghiệm phân biệt trong đó có đúng hai nghiệm lớn hơn \( – 1\) ?

Ngày 13/06/2022 Thuộc chủ đề:Trắc nghiệm Logarit và hàm số lôgarit Tag với:Trắc nghiệm HS mũ VDC 2022, Trắc nghiệm Logarit VDC 2022, VDC Toan 2022

Câu hỏi: (Sở Hà Tĩnh 2022) Có bao nhiêu giá trị nguyên của tham số \(m \in [ - 10;10]\) để phương trình \({2^{{3^m}}} \cdot {7^{{x^2} - 2x}} + {7^{{3^m}}} \cdot {2^{{x^2} - 2x}} = {14^{{3^m}}}\left( {7{x^2} - 14x + 2 - 7 \cdot {3^m}} \right)\)\(\) có bốn nghiệm phân biệt trong đó có đúng hai nghiệm lớn hơn \( - 1\) ? A. 10. B. 9. C. 11. D. 8. Lời … [Đọc thêm...] về

(Sở Hà Tĩnh 2022) Có bao nhiêu giá trị nguyên của tham số \(m \in [ – 10;10]\) để phương trình

\({2^{{3^m}}} \cdot {7^{{x^2} – 2x}} + {7^{{3^m}}} \cdot {2^{{x^2} – 2x}} = {14^{{3^m}}}\left( {7{x^2} – 14x + 2 – 7 \cdot {3^m}} \right)\)\(\)

có bốn nghiệm phân biệt trong đó có đúng hai nghiệm lớn hơn \( – 1\) ?

(Liên trường Hà Tĩnh 2022) Tính tổng tất cả các giá trị nguyên dương của \(m\) để bất phương trình \({2^{x + 3}} + {2^{m – x}} < {2^{m + 3}} + 1\) có nhiều nhất 20 nghiệm nguyên

Ngày 13/06/2022 Thuộc chủ đề:Trắc nghiệm Logarit và hàm số lôgarit Tag với:Trắc nghiệm HS mũ VDC 2022, Trắc nghiệm Logarit VDC 2022, VDC Toan 2022

Câu hỏi: (Liên trường Hà Tĩnh 2022) Tính tổng tất cả các giá trị nguyên dương của \(m\) để bất phương trình \({2^{x + 3}} + {2^{m - x}} < {2^{m + 3}} + 1\) có nhiều nhất 20 nghiệm nguyên A. 153. B. 171. C. 190. D. 210. Lời giải: Ta có BPT đã cho \( \Leftrightarrow {2^{x + 3}} + \frac{{{2^m}}}{{{2^x}}} < {8.2^m} + 1 \Leftrightarrow {8.2^{2x}} + … [Đọc thêm...] về

(Liên trường Hà Tĩnh 2022) Tính tổng tất cả các giá trị nguyên dương của \(m\) để bất phương trình \({2^{x + 3}} + {2^{m – x}} < {2^{m + 3}} + 1\) có nhiều nhất 20 nghiệm nguyên

(Chuyên Hoàng Văn Thụ – Hòa Bình – 2022) Có tất cả bao nhiêu giá trị nguyên của \(y\) sao cho tương ứng với mỗi giá trị y luôn tồn tại không quá 15 số nguyên \(x\) thỏa mãn điều kiện \({\log _{2021}}\left( {x + {y^2}} \right) + {\log _{2022}}\left( {{y^2} + y + 16} \right) \ge {\log _2}(x – y)\) ?

Ngày 12/06/2022 Thuộc chủ đề:Trắc nghiệm Logarit và hàm số lôgarit Tag với:Trắc nghiệm HS mũ VDC 2022, Trắc nghiệm Logarit VDC 2022, VDC Toan 2022

Câu hỏi: (Chuyên Hoàng Văn Thụ - Hòa Bình – 2022) Có tất cả bao nhiêu giá trị nguyên của \(y\) sao cho tương ứng với mỗi giá trị y luôn tồn tại không quá 15 số nguyên \(x\) thỏa mãn điều kiện \({\log _{2021}}\left( {x + {y^2}} \right) + {\log _{2022}}\left( {{y^2} + y + 16} \right) \ge {\log _2}(x - y)\) ? A. 2021. B. 4042. C. 2020. D. 4041. Lời … [Đọc thêm...] về

(Chuyên Hoàng Văn Thụ – Hòa Bình – 2022) Có tất cả bao nhiêu giá trị nguyên của \(y\) sao cho tương ứng với mỗi giá trị y luôn tồn tại không quá 15 số nguyên \(x\) thỏa mãn điều kiện \({\log _{2021}}\left( {x + {y^2}} \right) + {\log _{2022}}\left( {{y^2} + y + 16} \right) \ge {\log _2}(x – y)\) ?

(Sở Thanh Hóa 2022) Cho hàm số \(f(x)\) liên tục trên \(\mathbb{R}\) và có đổ thị như hình vẽ:

Ngày 12/06/2022 Thuộc chủ đề:Trắc nghiệm VDC Hàm số Tag với:Trắc nghiệm Hàm số VDC 2022, VDC Toan 2022

Câu hỏi: (Sở Thanh Hóa 2022) Cho hàm số \(f(x)\) liên tục trên \(\mathbb{R}\) và có đổ thị như hình vẽ: Xét \(T = 103f\left( {{a^2} + a + 1} \right) + 234f(af(b) + bf(a)),(a,b \in \mathbb{R})\). Biết \(T\) có giá trị lónn nhát bằng \(M\) đạt tại \(m\) cặp \((a;b)\), khi đó \(\frac{M}{m}\) bằng A. \(\frac{{1011}}{4}\). B. \(\frac{{1011}}{8}\). C. … [Đọc thêm...] về(Sở Thanh Hóa 2022) Cho hàm số \(f(x)\) liên tục trên \(\mathbb{R}\) và có đổ thị như hình vẽ:

(Liên trường Hà Tĩnh – 2022) Cho hàm số \(f(x) = {x^4} – 14{x^3} + 36{x^2} + (16 – m)x\) với \(m\) là tham số thực. Có bao nhiêu giá trị nguyên của \(m\) để hàm số \(g(x) = f(|x|)\) có 7 điểm cực trị?

Ngày 12/06/2022 Thuộc chủ đề:Trắc nghiệm VDC Hàm số Tag với:Trắc nghiệm Hàm số VDC 2022, VDC Toan 2022

Câu hỏi: (Liên trường Hà Tĩnh – 2022) Cho hàm số \(f(x) = {x^4} - 14{x^3} + 36{x^2} + (16 - m)x\) với \(m\) là tham số thực. Có bao nhiêu giá trị nguyên của \(m\) để hàm số \(g(x) = f(|x|)\) có 7 điểm cực trị? A. 33. B. 31. C. 32. D. 34. Lời giải: Xét hàm số: \(f(x) = {x^4} - 14{x^8} + 36{x^2} + (16 - m)x\). Tập xác định: \(D = … [Đọc thêm...] về

(Liên trường Hà Tĩnh – 2022) Cho hàm số \(f(x) = {x^4} – 14{x^3} + 36{x^2} + (16 – m)x\) với \(m\) là tham số thực. Có bao nhiêu giá trị nguyên của \(m\) để hàm số \(g(x) = f(|x|)\) có 7 điểm cực trị?

(Cụm Trường Nghệ An – 2022) Hàm số \(y = f\left( x \right)\) có đồ thị là đường cong trong hình vẽ. Số nghiệm thực phân biệt của phương trình \(f\left( {{e^{f\left( x \right)}} + f\left( x \right)} \right) = 1\) là:

Ngày 12/06/2022 Thuộc chủ đề:Trắc nghiệm VDC Hàm số Tag với:Trắc nghiệm Hàm số VDC 2022, VDC Toan 2022

Câu hỏi: (Cụm Trường Nghệ An - 2022) Hàm số \(y = f\left( x \right)\) có đồ thị là đường cong trong hình vẽ. Số nghiệm thực phân biệt của phương trình \(f\left( {{e^{f\left( x \right)}} + f\left( x \right)} \right) = 1\) là: A. \(2\). B. \(4\). C. \(6\). D. \(8\). Lời giải: Chọn C Dựa vào đồ thị hàm số ta có \(f\left( x \right) = 1 … [Đọc thêm...] về

(Cụm Trường Nghệ An – 2022) Hàm số \(y = f\left( x \right)\) có đồ thị là đường cong trong hình vẽ. Số nghiệm thực phân biệt của phương trình \(f\left( {{e^{f\left( x \right)}} + f\left( x \right)} \right) = 1\) là:

(THPT Nho Quan A – Ninh Bình – 2022) Cho hàm số \(f(x)\) có đạo hàm liên tục trên \(\mathbb{R}\). Đồ thị của hàm số \(y = f(5 – 2x)\) như hình vẽ bên dưới:

Có bao nhiêu giá trị thực của tham số \(m\) thuộc khoảng \(( – 9;9)\) thỏa mãn \(2m \in \mathbb{Z}\) và hàm số \(y = \left| {2f\left( {4{x^3} + 1} \right) + m – \frac{1}{2}} \right|\) có 5 điểm cực trị ?

Ngày 10/06/2022 Thuộc chủ đề:Trắc nghiệm VDC Hàm số Tag với:Trắc nghiệm Hàm số VDC 2022, VDC Toan 2022

Câu hỏi: (THPT Nho Quan A – Ninh Bình – 2022) Cho hàm số \(f(x)\) có đạo hàm liên tục trên \(\mathbb{R}\). Đồ thị của hàm số \(y = f(5 - 2x)\) như hình vẽ bên dưới: Có bao nhiêu giá trị thực của tham số \(m\) thuộc khoảng \(( - 9;9)\) thỏa mãn \(2m \in \mathbb{Z}\) và hàm số \(y = \left| {2f\left( {4{x^3} + 1} \right) + m - \frac{1}{2}} \right|\) có 5 điểm cực trị … [Đọc thêm...] về

(THPT Nho Quan A – Ninh Bình – 2022) Cho hàm số \(f(x)\) có đạo hàm liên tục trên \(\mathbb{R}\). Đồ thị của hàm số \(y = f(5 – 2x)\) như hình vẽ bên dưới:

Có bao nhiêu giá trị thực của tham số \(m\) thuộc khoảng \(( – 9;9)\) thỏa mãn \(2m \in \mathbb{Z}\) và hàm số \(y = \left| {2f\left( {4{x^3} + 1} \right) + m – \frac{1}{2}} \right|\) có 5 điểm cực trị ?

  • « Chuyển đến Trang trước
  • Trang 1
  • Interim pages omitted …
  • Trang 18
  • Trang 19
  • Trang 20
  • Trang 21
  • Trang 22
  • Interim pages omitted …
  • Trang 44
  • Chuyển đến Trang sau »

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.