• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Trắc nghiệm Toán 12
  • Máy tính

TN THPT 2022

Cho hàm số \(f\left( x \right)\) liên tục trên đoạn \(\left[ {0\,;\,5} \right]\) và có bảng biến thiên như hình vẽ dưới đây Có bao nhiêu giá trị nguyên của \(m\) để phương trình \(\sqrt {3x} + \sqrt {10 – 2x} = m\sqrt {f\left( x \right)} \) có nghiệm trên đoạn \(\left[ {0\,;\,5} \right]\)?

Đăng ngày: 21/09/2022 Biên tập: admin Thuộc chủ đề:Trắc nghiệm Giá trị lớn nhất và nhỏ nhất của hàm số Tag với:Max - Min, TN THPT 2022, VDC Toan 2023

Cho hàm số \(f\left( x \right)\) liên tục trên đoạn \(\left[ {0\,;\,5} \right]\) và có bảng biến thiên như hình vẽ dưới đây Có bao nhiêu giá trị nguyên của \(m\) để phương trình \(\sqrt {3x}  + \sqrt {10 - 2x}  = m\sqrt {f\left( x \right)} \) có nghiệm trên đoạn \(\left[ {0\,;\,5} \right]\)? A. 4. B. 7.                             C. … [Đọc thêm...] vềCho hàm số \(f\left( x \right)\) liên tục trên đoạn \(\left[ {0\,;\,5} \right]\) và có bảng biến thiên như hình vẽ dưới đây Có bao nhiêu giá trị nguyên của \(m\) để phương trình \(\sqrt {3x} + \sqrt {10 – 2x} = m\sqrt {f\left( x \right)} \) có nghiệm trên đoạn \(\left[ {0\,;\,5} \right]\)?

Đề toán 2022 [2H3-3.3-4] Trong không gian \(Oxyz\), cho mặt cầu \(\left( S \right)\) tâm \(I\left( {4\,;\,1\,;\,2} \right)\) bán kính bằng 2. Gọi \(M,N\) là hai điểm lần lượt thuộc hai trục \(Ox,Oy\) sao cho đường thẳng \(MN\) tiếp xúc với \(\left( S \right)\), đồng thời mặt cầu ngoại tiếp tứ diện \(OIMN\) có bán kính bằng \(\frac{7}{2}\). Gọi \(A\) là tiếp điểm của \(MN\) và \(\left( S \right)\), giá trị của \(AM.AN\) bằng.

Đăng ngày: 01/08/2022 Biên tập: admin Thuộc chủ đề:Trắc nghiệm Phương trình mặt cầu và các dạng toán liên quan Tag với:TN THPT 2022, Trac nghiem hinh hoc OXYZ phuong trinh mat cau

Đề toán 2022 [2H3-3.3-4] Trong không gian \(Oxyz\), cho mặt cầu \(\left( S \right)\) tâm \(I\left( {4\,;\,1\,;\,2} \right)\) bán kính bằng 2. Gọi \(M,N\) là hai điểm lần lượt thuộc hai trục \(Ox,Oy\) sao cho đường thẳng \(MN\) tiếp xúc với \(\left( S \right)\), đồng thời mặt cầu ngoại tiếp tứ diện \(OIMN\) có bán kính bằng \(\frac{7}{2}\). Gọi \(A\) là tiếp điểm của \(MN\) và … [Đọc thêm...] về

Đề toán 2022 [2H3-3.3-4] Trong không gian \(Oxyz\), cho mặt cầu \(\left( S \right)\) tâm \(I\left( {4\,;\,1\,;\,2} \right)\) bán kính bằng 2. Gọi \(M,N\) là hai điểm lần lượt thuộc hai trục \(Ox,Oy\) sao cho đường thẳng \(MN\) tiếp xúc với \(\left( S \right)\), đồng thời mặt cầu ngoại tiếp tứ diện \(OIMN\) có bán kính bằng \(\frac{7}{2}\). Gọi \(A\) là tiếp điểm của \(MN\) và \(\left( S \right)\), giá trị của \(AM.AN\) bằng.

Đề toán 2022 Trong không gian \(Oxyz\), cho mặt cầu \((S)\) tâm \(I(9;3;1)\) bán kính bằng 3. Gọi \(M\), \(N\) là hai điểm lần lượt thuộc hai trục \(Ox\), \(Oz\) sao cho đường thẳng \(MN\) tiếp xúc với \((S)\),đồng thời mặt cầu ngoại tiếp tứ diện \(OIMN\) có bán kính bằng \(\frac{{13}}{2}\). Gọi \(A\) là tiếp điểm của \(MN\) và \((S)\), giá trị \(AM.AN\) bằng

Đăng ngày: 01/08/2022 Biên tập: admin Thuộc chủ đề:Trắc nghiệm Phương trình mặt cầu và các dạng toán liên quan Tag với:TN THPT 2022, Trac nghiem hinh hoc OXYZ phuong trinh mat cau

Đề toán 2022 Trong không gian \(Oxyz\), cho mặt cầu \((S)\) tâm \(I(9;3;1)\) bán kính bằng 3. Gọi \(M\), \(N\) là hai điểm lần lượt thuộc hai trục \(Ox\), \(Oz\) sao cho đường thẳng \(MN\) tiếp xúc với \((S)\),đồng thời mặt cầu ngoại tiếp tứ diện \(OIMN\) có bán kính bằng \(\frac{{13}}{2}\). Gọi \(A\) là tiếp điểm của \(MN\) và \((S)\), giá trị \(AM.AN\) bằng A. \(12\sqrt 3 … [Đọc thêm...] về

Đề toán 2022 Trong không gian \(Oxyz\), cho mặt cầu \((S)\) tâm \(I(9;3;1)\) bán kính bằng 3. Gọi \(M\), \(N\) là hai điểm lần lượt thuộc hai trục \(Ox\), \(Oz\) sao cho đường thẳng \(MN\) tiếp xúc với \((S)\),đồng thời mặt cầu ngoại tiếp tứ diện \(OIMN\) có bán kính bằng \(\frac{{13}}{2}\). Gọi \(A\) là tiếp điểm của \(MN\) và \((S)\), giá trị \(AM.AN\) bằng

Đề toán 2022 Trong không gian \(Oxyz\), cho mặt cầu \(\left( S \right)\) tâm \(I\left( {1;4;2} \right)\), bán kính bằng 2. Gọi \(M,N\) là hai điểm lần lượt thuộc hai trục \(Ox,Oy\) sao cho đường thẳng \(MN\) tiếp xúc với \(\left( S \right)\), đồng thời mặt cầu ngoại tiếp tứ diện \(OIMN\) có bán kính bằng \(\frac{7}{2}\). Gọi \(A\) là tiếp điểm của \(MN\) và \(\left( S \right)\), giá trị \(AM.AN\) bằng

Đăng ngày: 01/08/2022 Biên tập: admin Thuộc chủ đề:Trắc nghiệm Phương trình mặt cầu và các dạng toán liên quan Tag với:TN THPT 2022, Trac nghiem hinh hoc OXYZ phuong trinh mat cau

Đề toán 2022 Trong không gian \(Oxyz\), cho mặt cầu \(\left( S \right)\) tâm \(I\left( {1;4;2} \right)\), bán kính bằng 2. Gọi \(M,N\) là hai điểm lần lượt thuộc hai trục \(Ox,Oy\) sao cho đường thẳng \(MN\) tiếp xúc với \(\left( S \right)\), đồng thời mặt cầu ngoại tiếp tứ diện \(OIMN\) có bán kính bằng \(\frac{7}{2}\). Gọi \(A\) là tiếp điểm của \(MN\) và \(\left( S … [Đọc thêm...] về

Đề toán 2022 Trong không gian \(Oxyz\), cho mặt cầu \(\left( S \right)\) tâm \(I\left( {1;4;2} \right)\), bán kính bằng 2. Gọi \(M,N\) là hai điểm lần lượt thuộc hai trục \(Ox,Oy\) sao cho đường thẳng \(MN\) tiếp xúc với \(\left( S \right)\), đồng thời mặt cầu ngoại tiếp tứ diện \(OIMN\) có bán kính bằng \(\frac{7}{2}\). Gọi \(A\) là tiếp điểm của \(MN\) và \(\left( S \right)\), giá trị \(AM.AN\) bằng

Đề toán 2022 [2D1-2.7-4] Có bao nhiêu giá trị nguyên âm của tham số \(a\) để hàm số \(y = \left| {{x^4} + 2a{x^2} + 8x} \right|\) có đúng ba điểm cực trị.

Đăng ngày: 01/08/2022 Biên tập: admin Thuộc chủ đề:Trắc nghiệm Cực trị của hàm số Tag với:Cuc tri ham hop, TN THPT 2022, VDC Toan 2023

Đề toán 2022 [2D1-2.7-4] Có bao nhiêu giá trị nguyên âm của tham số \(a\) để hàm số \(y = \left| {{x^4} + 2a{x^2} + 8x} \right|\) có đúng ba điểm cực trị. A. \(2\). B. \(6\). C.\(5\). D. \(3\). Lời giải Xét hàm số \(g\left( x \right) = {x^4} + 2a{x^2} + 8x\); \(\mathop {\lim }\limits_{x \to  \pm \infty } \,g\left( x \right) =  + \infty \). \(g\left( x … [Đọc thêm...] về

Đề toán 2022 [2D1-2.7-4] Có bao nhiêu giá trị nguyên âm của tham số \(a\) để hàm số \(y = \left| {{x^4} + 2a{x^2} + 8x} \right|\) có đúng ba điểm cực trị.

Đề toán 2022 [ Mức độ 4] Trong không gian \(Oxyz\), cho mặt cầu \(\left( S \right)\) tâm \(I\left( {1;\,3;\,9} \right)\) bán kính bằng \(3\). Gọi \(M\), \(N\) là hai điểm lần lượt thuộc hai trục \(Ox\), \(Oz\) sao cho đường thẳng \(MN\) tiếp xúc với \(\left( S \right)\), đồng thời mặt cầu ngoại tiếp tứ diện \(OIMN\) có bán kính bằng \(\frac{{13}}{2}\). Gọi \(A\) là tiếp điểm của \(MN\) và \(\left( S \right)\), giá trị \(AM.AN\) bằng

Đăng ngày: 01/08/2022 Biên tập: admin Thuộc chủ đề:Trắc nghiệm Phương trình mặt cầu và các dạng toán liên quan Tag với:TN THPT 2022, Trac nghiem hinh hoc OXYZ phuong trinh mat cau

Đề toán 2022 [ Mức độ 4] Trong không gian \(Oxyz\), cho mặt cầu \(\left( S \right)\) tâm \(I\left( {1;\,3;\,9} \right)\) bán kính bằng \(3\). Gọi \(M\), \(N\) là hai điểm lần lượt thuộc hai trục \(Ox\), \(Oz\) sao cho đường thẳng \(MN\) tiếp xúc với \(\left( S \right)\), đồng thời mặt cầu ngoại tiếp tứ diện \(OIMN\) có bán kính bằng \(\frac{{13}}{2}\). Gọi \(A\) là tiếp điểm … [Đọc thêm...] về

Đề toán 2022 [ Mức độ 4] Trong không gian \(Oxyz\), cho mặt cầu \(\left( S \right)\) tâm \(I\left( {1;\,3;\,9} \right)\) bán kính bằng \(3\). Gọi \(M\), \(N\) là hai điểm lần lượt thuộc hai trục \(Ox\), \(Oz\) sao cho đường thẳng \(MN\) tiếp xúc với \(\left( S \right)\), đồng thời mặt cầu ngoại tiếp tứ diện \(OIMN\) có bán kính bằng \(\frac{{13}}{2}\). Gọi \(A\) là tiếp điểm của \(MN\) và \(\left( S \right)\), giá trị \(AM.AN\) bằng

Đề toán 2022 Cho hàm số bậc bốn \(y = f\left( x \right)\). Biết rằng hàm số \(g\left( x \right) = \ln f\left( x \right)\) có bảng biến thiên như sau

Diện tích hình phẳng giới hạn bởi các đường \(y = f’\left( x \right)\) và \(y = g’\left( x \right)\) thuộc khoảng nào dưới đây?

Đăng ngày: 01/08/2022 Biên tập: admin Thuộc chủ đề:Trắc nghiệm Ứng dụng Tích phân Tag với:TN THPT 2022, Trắc nghiệm ứng dụng tích phân diện tích hình phẳng

Đề toán 2022 Cho hàm số bậc bốn \(y = f\left( x \right)\). Biết rằng hàm số \(g\left( x \right) = \ln f\left( x \right)\) có bảng biến thiên như sau Diện tích hình phẳng giới hạn bởi các đường \(y = f'\left( x \right)\) và \(y = g'\left( x \right)\) thuộc khoảng nào dưới đây? A. \(\left( {7;8} \right)\). B. \(\left( {6;7} \right)\). C. \(\left( {8;9} \right)\). D. … [Đọc thêm...] về

Đề toán 2022 Cho hàm số bậc bốn \(y = f\left( x \right)\). Biết rằng hàm số \(g\left( x \right) = \ln f\left( x \right)\) có bảng biến thiên như sau

Diện tích hình phẳng giới hạn bởi các đường \(y = f’\left( x \right)\) và \(y = g’\left( x \right)\) thuộc khoảng nào dưới đây?

Đề toán 2022  [Mức độ 4] Cho các số phức \({z_1},{z_2},{z_3}\) thỏa mãn \(\left| {{z_1}} \right| = \left| {{z_2}} \right| = n,\left| {{z_3}} \right| = m\) và \(\left( {{z_1} + {z_2}} \right){z_3} = k{z_1}{z_2}\,\left( {n > 0,m > 0,k > 0} \right)\). Gọi A, B, C lần lượt là các điểm biểu diễn của \({z_1},{z_2},{z_3}\) trên mặt phẳng tọa độ. Tính diện tích tam giác ABC theo \(m,n,k\)

Đăng ngày: 01/08/2022 Biên tập: admin Thuộc chủ đề:Trắc nghiệm phương trình trên tập số phức Tag với:so phuc vdc, TN THPT 2022

Đề toán 2022  [Mức độ 4] Cho các số phức \({z_1},{z_2},{z_3}\) thỏa mãn \(\left| {{z_1}} \right| = \left| {{z_2}} \right| = n,\left| {{z_3}} \right| = m\) và \(\left( {{z_1} + {z_2}} \right){z_3} = k{z_1}{z_2}\,\left( {n > 0,m > 0,k > 0} \right)\). Gọi A, B, C lần lượt là các điểm biểu diễn của \({z_1},{z_2},{z_3}\) trên mặt phẳng tọa độ. Tính diện tích tam giác … [Đọc thêm...] về

Đề toán 2022  [Mức độ 4] Cho các số phức \({z_1},{z_2},{z_3}\) thỏa mãn \(\left| {{z_1}} \right| = \left| {{z_2}} \right| = n,\left| {{z_3}} \right| = m\) và \(\left( {{z_1} + {z_2}} \right){z_3} = k{z_1}{z_2}\,\left( {n > 0,m > 0,k > 0} \right)\). Gọi A, B, C lần lượt là các điểm biểu diễn của \({z_1},{z_2},{z_3}\) trên mặt phẳng tọa độ. Tính diện tích tam giác ABC theo \(m,n,k\)

Đề toán 2022 [Mức độ 3] Có bao nhiêu số phức \(z\) thỏa mãn \(|z{|^2} = |z – \mathop z\limits^\_ |\) và \(|(z – 2)(\mathop z\limits^\_  – 2i)| = |z + 2i{|^2}\)

Đăng ngày: 01/08/2022 Biên tập: admin Thuộc chủ đề:Trắc nghiệm phương trình trên tập số phức Tag với:so phuc vdc, TN THPT 2022

Đề toán 2022 [Mức độ 3] Có bao nhiêu số phức \(z\) thỏa mãn \(|z{|^2} = |z - \mathop z\limits^\_ |\) và \(|(z - 2)(\mathop z\limits^\_  - 2i)| = |z + 2i{|^2}\) A. \(2\) B. \({\rm{3}}\) C. \(1\) D. \(4\) Lời giải Đặt: \(z = a + bi(a,b \in \mathbb{R})\) Theo giả thiết: \(\left\{ \begin{array}{l}|z{|^2} = |z - \mathop z\limits^\_ |(1)\\|(z - 2)(\mathop … [Đọc thêm...] về

Đề toán 2022 [Mức độ 3] Có bao nhiêu số phức \(z\) thỏa mãn \(|z{|^2} = |z – \mathop z\limits^\_ |\) và \(|(z – 2)(\mathop z\limits^\_  – 2i)| = |z + 2i{|^2}\)

Đề toán 2022 Cho các số phức \({z_1},{z_2},{z_3}\) thỏa mãn \(2\left| {{z_1}} \right| = 2\left| {{z_2}} \right| = \left| {{z_3}} \right| = 2\) và \(\left( {{z_1} + {z_2}} \right){z_3} = 3{z_1}{z_2}\).Gọi \(A,B,C\)lần lượt là các điểm biểu diễn của \({z_1},{z_2},{z_3}\) trên mặt phẳng tọa độ. Diện tích tam giác \(ABC\)bằng

Đăng ngày: 01/08/2022 Biên tập: admin Thuộc chủ đề:Trắc nghiệm phương trình trên tập số phức Tag với:so phuc vdc, TN THPT 2022

Đề toán 2022 Cho các số phức \({z_1},{z_2},{z_3}\) thỏa mãn \(2\left| {{z_1}} \right| = 2\left| {{z_2}} \right| = \left| {{z_3}} \right| = 2\) và \(\left( {{z_1} + {z_2}} \right){z_3} = 3{z_1}{z_2}\).Gọi \(A,B,C\)lần lượt là các điểm biểu diễn của \({z_1},{z_2},{z_3}\) trên mặt phẳng tọa độ. Diện tích tam giác \(ABC\)bằng A. \(\frac{{5\sqrt 7 }}{8}\) B. \(\frac{{5\sqrt 7 … [Đọc thêm...] về

Đề toán 2022 Cho các số phức \({z_1},{z_2},{z_3}\) thỏa mãn \(2\left| {{z_1}} \right| = 2\left| {{z_2}} \right| = \left| {{z_3}} \right| = 2\) và \(\left( {{z_1} + {z_2}} \right){z_3} = 3{z_1}{z_2}\).Gọi \(A,B,C\)lần lượt là các điểm biểu diễn của \({z_1},{z_2},{z_3}\) trên mặt phẳng tọa độ. Diện tích tam giác \(ABC\)bằng

  • Chuyển tới trang 1
  • Chuyển tới trang 2
  • Chuyển tới trang 3
  • Interim pages omitted …
  • Chuyển tới trang 18
  • Chuyển đến Trang sau »

Sidebar chính

MỤC LỤC




Booktoan.com (2015 - 2023) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
THÔNG TIN:
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.