• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán
Bạn đang ở:Trang chủ / Trắc nghiệm Tính đơn điệu của hàm số / Cho hàm số \(f\left( x \right) = {x^3} – 2mx + x – m.\) Có bao nhiêu giá trị nguyên dương của tham số \(m\) để  hàm số \(g\left( x \right) = f\left( {1 – 2x} \right)\) nghịch biến trên khoảng \(\left( { – 2;3} \right)\)?

Cho hàm số \(f\left( x \right) = {x^3} – 2mx + x – m.\) Có bao nhiêu giá trị nguyên dương của tham số \(m\) để  hàm số \(g\left( x \right) = f\left( {1 – 2x} \right)\) nghịch biến trên khoảng \(\left( { – 2;3} \right)\)?

Ngày 20/05/2024 Thuộc chủ đề:Trắc nghiệm Tính đơn điệu của hàm số Tag với:Don dieu ham hop, don dieu VD, Tim m de tang giam tren khoang

Cho hàm số \(f\left( x \right) = {x^3} – 2mx + x – m.\) Có bao nhiêu giá trị nguyên dương của tham số \(m\) để  hàm số \(g\left( x \right) = f\left( {1 – 2x} \right)\) nghịch biến trên khoảng \(\left( { – 2;3} \right)\)?

A. \(0\).

 B. \(1\).

 C. \(2\).

 D. Vô số.

Lời giải:

Chọn A

Ta có

 \(\begin{array}{l}f\left( x \right) = {x^3} – 2mx + x – m\\ \Rightarrow g\left( x \right) = f\left( {1 – 2x} \right) = {\left( {1 – 2x} \right)^3} – 2m\left( {1 – 2x} \right) + \left( {1 – 2x} \right) – m\\ \Rightarrow g\left( x \right) =  – 8{x^3} + 12{x^2} + 4\left( {m – 2} \right)x + 2 – 3m\\ \Rightarrow g’\left( x \right) =  – 24{x^2} + 24x + 4\left( {m – 2} \right)\end{array}\).

Hàm số \(g\left( x \right) = f\left( {1 – 2x} \right)\) nghịch biến trên khoảng \(\left( { – 2;3} \right)\)

 \(\begin{array}{l} \Leftrightarrow g’\left( x \right) \le 0;\forall x \in \left( { – 2;3} \right)\\ \Leftrightarrow  – 24{x^2} + 24x + 4\left( {m – 2} \right) \le 0;\forall x \in \left( { – 2;3} \right)\\ \Leftrightarrow 6{x^2} – 6x + 2 \ge m;\forall x \in \left( { – 2;3} \right)\\ \Leftrightarrow 6{\left( {x – \frac{1}{2}} \right)^2} + \frac{1}{2} \ge m;\forall x \in \left( { – 2;3} \right)\end{array}\)

\(do:\left\{ \begin{array}{l}6{\left( {x – \frac{1}{2}} \right)^2} + \frac{1}{2} \ge \frac{1}{2};\forall x \in \left( { – 2;3} \right)\\6{\left( {x – \frac{1}{2}} \right)^2} + \frac{1}{2} = \frac{1}{2}{\rm{ }}khi{\rm{ }}x = \frac{1}{2}\end{array} \right.\)

 Nên \(6{\left( {x – \frac{1}{2}} \right)^2} + \frac{1}{2}\)  đạt giá trị nhỏ nhất bằng \(\frac{1}{2}\) suy ra \(m \le \frac{1}{2}\)

Mà \(m\)nguyên dương .

Vậy không số nguyên dương \(m\) thỏa mãn.

===========
Đây là các câu File: Câu 40 TÌM m ĐỂ HÀM SỐ TĂNG – GIẢM TRÊN KHOẢNG – PHÁT TRIỂN Toán TK 2024

Bài liên quan:

  1. Cho hàm số \(y = {\left( {\frac{1}{2}} \right)^{{{\rm{e}}^{2x}} – \,\left( {3m\,\, – \,2} \right){{\rm{e}}^x} + 2024m}}\). Có bao nhiêu giá trị nguyên của tham số \(m \in \left[ { – 10;10} \right]\) để hàm số đã cho đồng biến trên khoảng \(\left( {1;2} \right)\)?

  2.    Cho hàm số \(y = \frac{{{x^2} + x + m}}{{x – 1}}\), (\(m\) là tham số). Tìm tất cả các giá trị thực của tham số \(m\) để hàm số có hai cực trị \(a,\,b\) thỏa mãn \({a^2} + {b^2} = 10\).

  3.    Cho hàm số \(y = \frac{{{x^2} + x + 1}}{{x + 1}}\) có đồ thị \(\left( C \right)\) và điểm \(M\left( {{x_0};{y_0}} \right) \in \left( C \right)\). Biết rằng điểm \(M\) thuộc nhánh bên phải tiệm cận đứng của \(\left( C \right)\). Tìm \({x_0}\) để điểm \(M\) ở gần điểm \(I\left( { – 1; – 1} \right)\) nhất.

  4. Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn \(\left[ { – 2024;2024} \right]\) sao cho ứng với mỗi  m, hàm số \(y = \frac{{ – {x^2} + 4x + m + 1}}{{4x + m}}\) có đúng một điểm cực trị thuộc khoảng \(\left( {2;4} \right)\)?

  5. Tất cả các giá trị của \(m\) để hàm số \(y = \frac{{2\cos x – 1}}{{\cos x – m}}\) đồng biến trên khoảng \(\left( {0\,;\,\frac{\pi }{2}} \right)\) là:

  6.  Có bao nhiêu giá trị nguyên của \(m\) thuộc đoạn \(\left[ { – 2024;\,2024} \right]\) để hàm số \(y = \frac{{{{\cot }^2}x – 2m\cot x + 2{m^2} – 1}}{{\cot x – m}}\) nghịch biến trên \(\left( {\frac{\pi }{4};\,\frac{\pi }{2}} \right)\) ?

  7. Tìm tất cả các giá trị thực của \(m\) để hàm số \(y = \left( {m – {x^3}} \right)\sqrt {1 – {x^3}} \) đồng biến trên \(\left( {0;{\rm{ }}1} \right)\).

  8. Có tất cả bao nhiêu giá trị nguyên của tham số \(m\) thuộc đoạn \(\left[ { – 3;8} \right]\) sao cho ứng với mỗi \(m\), hàm số \(y = x – 4\sqrt {x + m} \) nghịch biến trên \(\left( {0;2} \right)\)?

  9. Có bao nhiêu giá trị nguyên của thuộc \(\left[ { – 10;10} \right]\) để hàm số \(y = {\log _2}\left( {3{x^2} – 6\left( {2m + 1} \right)x + 12m + 5} \right)\) đồng biến trên khoảng \(\left( {2;5} \right)\).
  10.  Cho hàm số \(y = \frac{{\ln x – 6}}{{\ln x – 3m}}\) với \(m\) là tham số. Gọi \(S\) là tập hợp các giá trị nguyên dương của \(m\) để hàm số đồng biến trên khoảng \(\left( {1;{\rm{e}}} \right)\). Tìm số phần tử của \(S\).

  11. Cho hàm số \(y = f\left( x \right)\)liên tục trên \(R\)và có bảng biến thiên như hình vẽ.

    Xét hàm số \(g\left( x \right) = {e^{f\left( {2x + m} \right)}}\). Tìm số giá trị nguyên của tham số \(m \in \left[ { – 2024;2024} \right]\)để hàm số \(g\left( x \right)\)đồng biến trên \(\left( {1;3} \right)\).

  12. Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như sau

    Có bao nhiêu số nguyên dương \(m < 2024\)để hàm số \(g\left( x \right) = f\left( { – {x^2} – 2x + m} \right)\) nghịch biến trên khoảng \(\left( {2;3} \right)\)?

  13. Cho hàm số \(y = f\left( x \right)\) có đồ thị hàm số \(y = f\left( x \right)\) như hình bên dưới. Hàm số \(g\left( x \right) = f\left( {{x^2} – x} \right)\) có bao nhiêu cực trị

  14.  Cho hàm số \(f\left( x \right) = {x^3} + a{x^2} + bx + c\) có đồ thị hàm số như hình dưới đây. Hàm số \(g\left( x \right) = f\left( {{x^2} + 3x + 1} \right)\) đồng biến trên khoảng nào? 

  15.    Cho hàm số \(y = f\left( x \right)\)liên tục trên \(\mathbb{R}\). Biết rằng đồ thị hàm \(y = f’\left( x \right)\)được cho như hình vẽ bên.

    Giá trị nhỏ nhất của hàm số \(g\left( x \right) = 3f\left( {2x + 1} \right) – 8{x^3} – 12{x^2} + 2\) trên đoạn \(\left[ { – 1;1} \right]\) bằng:

Reader Interactions

Để lại một bình luận Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.