• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán
Bạn đang ở:Trang chủ / Trắc nghiệm Tính đơn điệu của hàm số /    Cho hàm số \(y = \frac{{{x^2} + x + m}}{{x – 1}}\), (\(m\) là tham số). Tìm tất cả các giá trị thực của tham số \(m\) để hàm số có hai cực trị \(a,\,b\) thỏa mãn \({a^2} + {b^2} = 10\).

   Cho hàm số \(y = \frac{{{x^2} + x + m}}{{x – 1}}\), (\(m\) là tham số). Tìm tất cả các giá trị thực của tham số \(m\) để hàm số có hai cực trị \(a,\,b\) thỏa mãn \({a^2} + {b^2} = 10\).

Ngày 20/05/2024 Thuộc chủ đề:Trắc nghiệm Tính đơn điệu của hàm số Tag với:Don dieu ham hop, don dieu VD, Tim m de tang giam tren khoang

   Cho hàm số \(y = \frac{{{x^2} + x + m}}{{x – 1}}\), (\(m\) là tham số). Tìm tất cả các giá trị thực của tham số \(m\) để hàm số có hai cực trị \(a,\,b\) thỏa mãn \({a^2} + {b^2} = 10\).

A. \(m =  – 3\).

 B. \(m = 2\).

 C. \(m = \frac{7}{2}\).

 D. \(m = 1\)

Lời giải:

Ta có \(y’ = \frac{{{x^2} – 2x – m – 1}}{{{{\left( {x – 1} \right)}^2}}}\), \(\left( {x \ne 1} \right)\)

Để hàm số có hai điểm cực trị thì phương trình \(f(x) = {x^2} – 2x – m – 1 = 0\) có hai nghiệm phân biệt khác 1\( \Leftrightarrow \left\{ \begin{array}{l}\Delta ‘ = m + 2 > 0\\f(1) \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m >  – 2\\m \ne  – 2\end{array} \right. \Leftrightarrow m >  – 2\).

Đường thẳng đi qua hai điểm cực trị có phương trình là \(y = 2x + 1\)

Gọi \({x_1},\,{x_2}\) là hoành độ hai điểm cực trị.

Áp dụng định lí  Vi – ét ta có  \(\left\{ \begin{array}{l}{x_1} + {x_2} = 2\\{x_1}.{x_2} =  – m – 1\end{array} \right.\)

Theo đề bài \({a^2} + {b^2} = 10 \Leftrightarrow {\left( {2{x_1} + 1} \right)^2} + {\left( {2{x_2} + 1} \right)^2} = 10\)

 \(\begin{array}{l} \Leftrightarrow 4\left( {x_1^2 + x_2^2} \right) + 4\left( {{x_1} + {x_2}} \right) + 2 = 42\\ \Leftrightarrow 4{\left( {{x_1} + {x_2}} \right)^2} – 8{x_1}{x_2} + 4\left( {{x_1} + {x_2}} \right) – 40 = 0\\ \Leftrightarrow 16 – 8\left( { – m – 1} \right) + 8 – 40 = 0\\ \Leftrightarrow m = 1.\end{array}\)

Đối chiếu điều kiện ta thấy  thỏa mãn.

Vậy \(m = 1\) thỏa mãn đề bài.

===========
Đây là các câu File: Câu 40 TÌM m ĐỂ HÀM SỐ TĂNG – GIẢM TRÊN KHOẢNG – PHÁT TRIỂN Toán TK 2024

Bài liên quan:

  1. Cho hàm số \(y = {\left( {\frac{1}{2}} \right)^{{{\rm{e}}^{2x}} – \,\left( {3m\,\, – \,2} \right){{\rm{e}}^x} + 2024m}}\). Có bao nhiêu giá trị nguyên của tham số \(m \in \left[ { – 10;10} \right]\) để hàm số đã cho đồng biến trên khoảng \(\left( {1;2} \right)\)?

  2.  Cho hàm số \(y = \frac{{\ln x – 6}}{{\ln x – 3m}}\) với \(m\) là tham số. Gọi \(S\) là tập hợp các giá trị nguyên dương của \(m\) để hàm số đồng biến trên khoảng \(\left( {1;{\rm{e}}} \right)\). Tìm số phần tử của \(S\).

  3.    Cho hàm số \(y = \frac{{{x^2} + x + 1}}{{x + 1}}\) có đồ thị \(\left( C \right)\) và điểm \(M\left( {{x_0};{y_0}} \right) \in \left( C \right)\). Biết rằng điểm \(M\) thuộc nhánh bên phải tiệm cận đứng của \(\left( C \right)\). Tìm \({x_0}\) để điểm \(M\) ở gần điểm \(I\left( { – 1; – 1} \right)\) nhất.

  4. Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn \(\left[ { – 2024;2024} \right]\) sao cho ứng với mỗi  m, hàm số \(y = \frac{{ – {x^2} + 4x + m + 1}}{{4x + m}}\) có đúng một điểm cực trị thuộc khoảng \(\left( {2;4} \right)\)?

  5. Tất cả các giá trị của \(m\) để hàm số \(y = \frac{{2\cos x – 1}}{{\cos x – m}}\) đồng biến trên khoảng \(\left( {0\,;\,\frac{\pi }{2}} \right)\) là:

  6.  Có bao nhiêu giá trị nguyên của \(m\) thuộc đoạn \(\left[ { – 2024;\,2024} \right]\) để hàm số \(y = \frac{{{{\cot }^2}x – 2m\cot x + 2{m^2} – 1}}{{\cot x – m}}\) nghịch biến trên \(\left( {\frac{\pi }{4};\,\frac{\pi }{2}} \right)\) ?

  7. Tìm tất cả các giá trị thực của \(m\) để hàm số \(y = \left( {m – {x^3}} \right)\sqrt {1 – {x^3}} \) đồng biến trên \(\left( {0;{\rm{ }}1} \right)\).

  8. Có tất cả bao nhiêu giá trị nguyên của tham số \(m\) thuộc đoạn \(\left[ { – 3;8} \right]\) sao cho ứng với mỗi \(m\), hàm số \(y = x – 4\sqrt {x + m} \) nghịch biến trên \(\left( {0;2} \right)\)?

  9. Có bao nhiêu giá trị nguyên của thuộc \(\left[ { – 10;10} \right]\) để hàm số \(y = {\log _2}\left( {3{x^2} – 6\left( {2m + 1} \right)x + 12m + 5} \right)\) đồng biến trên khoảng \(\left( {2;5} \right)\).
  10. Tìm tập các giá trị của \(m\) để hàm số \(y = \frac{{\ln x – m}}{{m\ln x – 4}}\) đồng biến trên khoảng \(\left( {{\rm{e}}; + \infty } \right)\).

  11. Cho hàm số \(y = f\left( x \right)\)liên tục trên \(R\)và có bảng biến thiên như hình vẽ.

    Xét hàm số \(g\left( x \right) = {e^{f\left( {2x + m} \right)}}\). Tìm số giá trị nguyên của tham số \(m \in \left[ { – 2024;2024} \right]\)để hàm số \(g\left( x \right)\)đồng biến trên \(\left( {1;3} \right)\).

  12. Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như sau

    Có bao nhiêu số nguyên dương \(m < 2024\)để hàm số \(g\left( x \right) = f\left( { – {x^2} – 2x + m} \right)\) nghịch biến trên khoảng \(\left( {2;3} \right)\)?

  13. Cho hàm số \(y = f\left( x \right)\) có đồ thị hàm số \(y = f\left( x \right)\) như hình bên dưới. Hàm số \(g\left( x \right) = f\left( {{x^2} – x} \right)\) có bao nhiêu cực trị

  14.  Cho hàm số \(f\left( x \right) = {x^3} + a{x^2} + bx + c\) có đồ thị hàm số như hình dưới đây. Hàm số \(g\left( x \right) = f\left( {{x^2} + 3x + 1} \right)\) đồng biến trên khoảng nào? 

  15.    Cho hàm số \(y = f\left( x \right)\)liên tục trên \(\mathbb{R}\). Biết rằng đồ thị hàm \(y = f’\left( x \right)\)được cho như hình vẽ bên.

    Giá trị nhỏ nhất của hàm số \(g\left( x \right) = 3f\left( {2x + 1} \right) – 8{x^3} – 12{x^2} + 2\) trên đoạn \(\left[ { – 1;1} \right]\) bằng:

Reader Interactions

Để lại một bình luận Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.