• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Toán 12
  • Toán 11
  • Toán 10
  • Trắc nghiệm
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán

Bất đẳng thức - Bài tập tự luận

Đề bài: Chứng minh rằng với 3 số dương $a,b,c$ bất kì, ta luôn có: $\frac{{{a^3}}}{{{a^2} + ab + {b^2}}} + \frac{{{b^3}}}{{{b^2} + bc + {c^2}}} + \frac{{{c^3}}}{{{c^2} + ca + {a^2}}} \ge \frac{{a + b + c}}{3}$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức cơ bản

Đề bài: Chứng minh rằng với 3 số dương $a,b,c$ bất kì, ta luôn có: $\frac{{{a^3}}}{{{a^2} + ab + {b^2}}} + \frac{{{b^3}}}{{{b^2} + bc + {c^2}}} + \frac{{{c^3}}}{{{c^2} + ca + {a^2}}} \ge \frac{{a + b + c}}{3}$ Lời giải Ta có:$\frac{{{a^3}}}{{{a^2} + ab + {b^2}}} \ge \frac{{2{\rm{a  -  b}}}}{{\rm{3}}}\Leftrightarrow 3a^3\ge a(a^2+ab+b^2)+a^3-b^3\Leftrightarrow … [Đọc thêm...] vềĐề bài: Chứng minh rằng với 3 số dương $a,b,c$ bất kì, ta luôn có: $\frac{{{a^3}}}{{{a^2} + ab + {b^2}}} + \frac{{{b^3}}}{{{b^2} + bc + {c^2}}} + \frac{{{c^3}}}{{{c^2} + ca + {a^2}}} \ge \frac{{a + b + c}}{3}$

Đề bài: Dùng bất đẳng thức Cô-si, tìm GTNN:a)$y=x+\frac{3}{x}; (x>0) $                                               b) GTNN $y=x+\frac{2}{x-3}; (x>3) $c) $y=5^{x+1}+5^{x-2} $                                                d) $y=\frac{2 x^{2}+3x+7 }{x} . (x>0)$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức Côsi

Đề bài: Dùng bất đẳng thức Cô-si, tìm GTNN:a)$y=x+\frac{3}{x}; (x>0) $                                               b) GTNN $y=x+\frac{2}{x-3}; (x>3) $c) $y=5^{x+1}+5^{x-2} $                                                d) $y=\frac{2 x^{2}+3x+7 }{x} . (x>0)$ Lời giải Đề bài: Dùng bất đẳng thức Cô-si, tìm GTNN:a)$y=x+\frac{3}{x}; (x>0) … [Đọc thêm...] vềĐề bài: Dùng bất đẳng thức Cô-si, tìm GTNN:a)$y=x+\frac{3}{x}; (x>0) $                                               b) GTNN $y=x+\frac{2}{x-3}; (x>3) $c) $y=5^{x+1}+5^{x-2} $                                                d) $y=\frac{2 x^{2}+3x+7 }{x} . (x>0)$

Đề bài: Cho $x,y,z>0;  xyz=1$.Tìm giá trị lớn nhất của biểu thức: $P=\frac{1}{x^2+2y^2+3}+\frac{1}{y^2+2z^2+3}+\frac{1}{z^2+2x^2+3}$.

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức Côsi

Đề bài: Cho $x,y,z>0;  xyz=1$.Tìm giá trị lớn nhất của biểu thức: $P=\frac{1}{x^2+2y^2+3}+\frac{1}{y^2+2z^2+3}+\frac{1}{z^2+2x^2+3}$. Lời giải Đề bài: Cho $x,y,z>0;  xyz=1$.Tìm giá trị lớn nhất của biểu thức: $P=\frac{1}{x^2+2y^2+3}+\frac{1}{y^2+2z^2+3}+\frac{1}{z^2+2x^2+3}$. Lời giải Áp … [Đọc thêm...] vềĐề bài: Cho $x,y,z>0;  xyz=1$.Tìm giá trị lớn nhất của biểu thức: $P=\frac{1}{x^2+2y^2+3}+\frac{1}{y^2+2z^2+3}+\frac{1}{z^2+2x^2+3}$.

Đề bài: Cho \(xy=4 (x>0, y>0)\). Tìm giá trị nhỏ nhất của:1)    \(x^{2}+y^{2}\)2)    \(x^{4}+y^{4}\)3)    \((x+1)(4y+3)\)

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức Côsi

Đề bài: Cho \(xy=4 (x>0, y>0)\). Tìm giá trị nhỏ nhất của:1)    \(x^{2}+y^{2}\)2)    \(x^{4}+y^{4}\)3)    \((x+1)(4y+3)\) Lời giải Đề bài: Cho \(xy=4 (x>0, y>0)\). Tìm giá trị nhỏ nhất của:1)    \(x^{2}+y^{2}\)2)    \(x^{4}+y^{4}\)3)    \((x+1)(4y+3)\) Lời giải 1)    Đặt: … [Đọc thêm...] vềĐề bài: Cho \(xy=4 (x>0, y>0)\). Tìm giá trị nhỏ nhất của:1)    \(x^{2}+y^{2}\)2)    \(x^{4}+y^{4}\)3)    \((x+1)(4y+3)\)

Đề bài: $a,b,c$ là $3$ số khác $0$. Chứng minh rằng $\frac{{{a^2}}}{{{b^2}}} + \frac{{{b^2}}}{{{c^2}}} + \frac{{{c^2}}}{{{a^2}}} \ge \frac{a}{b} + \frac{b}{c} + \frac{c}{a}$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức Côsi

Đề bài: $a,b,c$ là $3$ số khác $0$. Chứng minh rằng $\frac{{{a^2}}}{{{b^2}}} + \frac{{{b^2}}}{{{c^2}}} + \frac{{{c^2}}}{{{a^2}}} \ge \frac{a}{b} + \frac{b}{c} + \frac{c}{a}$ Lời giải Đề bài: $a,b,c$ là $3$ số khác $0$. Chứng minh rằng $\frac{{{a^2}}}{{{b^2}}} + \frac{{{b^2}}}{{{c^2}}} + \frac{{{c^2}}}{{{a^2}}} \ge \frac{a}{b} + \frac{b}{c} + \frac{c}{a}$ Lời … [Đọc thêm...] vềĐề bài: $a,b,c$ là $3$ số khác $0$. Chứng minh rằng $\frac{{{a^2}}}{{{b^2}}} + \frac{{{b^2}}}{{{c^2}}} + \frac{{{c^2}}}{{{a^2}}} \ge \frac{a}{b} + \frac{b}{c} + \frac{c}{a}$

Đề bài: Chứng minh rằng : $abc(a+b)(b+c)(c+a)\leq \frac{8}{729}$. Trong đó $a,b,c $ là các số thực không âm thỏa mãn $a+b+c=1$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức Côsi

Đề bài: Chứng minh rằng : $abc(a+b)(b+c)(c+a)\leq \frac{8}{729}$. Trong đó $a,b,c $ là các số thực không âm thỏa mãn $a+b+c=1$ Lời giải Đề bài: Chứng minh rằng : $abc(a+b)(b+c)(c+a)\leq \frac{8}{729}$. Trong đó $a,b,c $ là các số thực không âm thỏa mãn $a+b+c=1$ Lời giải Ta có: … [Đọc thêm...] vềĐề bài: Chứng minh rằng : $abc(a+b)(b+c)(c+a)\leq \frac{8}{729}$. Trong đó $a,b,c $ là các số thực không âm thỏa mãn $a+b+c=1$

Đề bài: Với $a,b,c>0$ và $a+b+c\leq 1$ chứng minh rằng:     $\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\geq 9$.

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức Côsi

Đề bài: Với $a,b,c>0$ và $a+b+c\leq 1$ chứng minh rằng:     $\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\geq 9$. Lời giải Đề bài: Với $a,b,c>0$ và $a+b+c\leq 1$ chứng minh rằng:     $\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\geq 9$. Lời giải Nhận xét rằng: … [Đọc thêm...] vềĐề bài: Với $a,b,c>0$ và $a+b+c\leq 1$ chứng minh rằng:     $\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\geq 9$.

Đề bài: Tìm giá trị lớn nhất của:$y=\sin^{2} x.\cos ^{6}x$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức Côsi

Đề bài: Tìm giá trị lớn nhất của:$y=\sin^{2} x.\cos ^{6}x$ Lời giải Đề bài: Tìm giá trị lớn nhất của:$y=\sin^{2} x.\cos ^{6}x$ Lời giải Áp dụng BĐT Cauchy:$1=\sin^{2} x+\frac{\cos^{2}x}{3}+\frac{\cos^{2}x}{3}+\frac{\cos^{2}x}{3}\geq 4\sqrt[4]{\frac{\sin^{2} x.\cos ^{6}x}{27}}$$\Rightarrow … [Đọc thêm...] vềĐề bài: Tìm giá trị lớn nhất của:$y=\sin^{2} x.\cos ^{6}x$

Đề bài: Chứng minh rằng với mọi $x, y$ dương ta có:  \({x^2} + {y^2} + \frac{1}{x} + \frac{1}{y} \ge 2\left( {\sqrt x  + \sqrt y } \right)\)

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức Côsi

Đề bài: Chứng minh rằng với mọi $x, y$ dương ta có:  \({x^2} + {y^2} + \frac{1}{x} + \frac{1}{y} \ge 2\left( {\sqrt x  + \sqrt y } \right)\) Lời giải Đề bài: Chứng minh rằng với mọi $x, y$ dương ta có:  \({x^2} + {y^2} + \frac{1}{x} + \frac{1}{y} \ge 2\left( {\sqrt x  + \sqrt y } \right)\) Lời giải … [Đọc thêm...] vềĐề bài: Chứng minh rằng với mọi $x, y$ dương ta có:  \({x^2} + {y^2} + \frac{1}{x} + \frac{1}{y} \ge 2\left( {\sqrt x  + \sqrt y } \right)\)

Đề bài: Cho  $\begin{cases}x,y,z \in [0;1] \\ x+y+z=\frac{3}{2} \end{cases}$Tìm giá trị lớn nhất  và giá trị nhỏ nhất của  $f(x,y,z)=\cos^2 (x^2+y^2+z^2)$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức Bunhiacốpxki

Đề bài: Cho  $\begin{cases}x,y,z \in [0;1] \\ x+y+z=\frac{3}{2} \end{cases}$Tìm giá trị lớn nhất  và giá trị nhỏ nhất của  $f(x,y,z)=\cos^2 (x^2+y^2+z^2)$ Lời giải Đề bài: Cho  $\begin{cases}x,y,z \in [0;1] \\ x+y+z=\frac{3}{2} \end{cases}$Tìm giá trị lớn nhất  và giá trị nhỏ nhất của  $f(x,y,z)=\cos^2 (x^2+y^2+z^2)$ Lời giải … [Đọc thêm...] vềĐề bài: Cho  $\begin{cases}x,y,z \in [0;1] \\ x+y+z=\frac{3}{2} \end{cases}$Tìm giá trị lớn nhất  và giá trị nhỏ nhất của  $f(x,y,z)=\cos^2 (x^2+y^2+z^2)$

  • « Chuyển đến Trang trước
  • Trang 1
  • Interim pages omitted …
  • Trang 37
  • Trang 38
  • Trang 39
  • Trang 40
  • Trang 41
  • Interim pages omitted …
  • Trang 43
  • Chuyển đến Trang sau »

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.