Đề bài: Cho phương trình $\sqrt{x+1}+\sqrt{4-x}+\sqrt{(x+1)(4-x)}=m (1)$Tìm $m$ để phương trình có nghiệm duy nhất. Lời giải Đề bài: Cho phương trình $\sqrt{x+1}+\sqrt{4-x}+\sqrt{(x+1)(4-x)}=m (1)$Tìm $m$ để phương trình có nghiệm duy nhất. Lời giải … [Đọc thêm...] vềĐề bài: Cho phương trình $\sqrt{x+1}+\sqrt{4-x}+\sqrt{(x+1)(4-x)}=m (1)$Tìm $m$ để phương trình có nghiệm duy nhất.
Bất đẳng thức Bunhiacốpxki
Đề bài: Cho các số thực $x,y,z,t$ thỏa mãn $xyzt=1$. Chứng minh rằng: $\frac{1}{x^3(yz+zt+ty)}+\frac{1}{y^3(xz+zt+tx)}+\frac{1}{z^3(xt+ty+yz)}+\frac{1}{t^3(xy+yz+zx)}\geq \frac{4}{3} . (1)$
Đề bài: Cho các số thực $x,y,z,t$ thỏa mãn $xyzt=1$. Chứng minh rằng: $\frac{1}{x^3(yz+zt+ty)}+\frac{1}{y^3(xz+zt+tx)}+\frac{1}{z^3(xt+ty+yz)}+\frac{1}{t^3(xy+yz+zx)}\geq \frac{4}{3} . (1)$ Lời giải Đề bài: Cho các số thực $x,y,z,t$ thỏa mãn $xyzt=1$. Chứng minh rằng: … [Đọc thêm...] vềĐề bài: Cho các số thực $x,y,z,t$ thỏa mãn $xyzt=1$. Chứng minh rằng: $\frac{1}{x^3(yz+zt+ty)}+\frac{1}{y^3(xz+zt+tx)}+\frac{1}{z^3(xt+ty+yz)}+\frac{1}{t^3(xy+yz+zx)}\geq \frac{4}{3} . (1)$
Đề bài: Cho ba số dương $x,y,z$ thoả mãn : $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=4$. Chứng minh rằng: $\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\leq 1.$
Đề bài: Cho ba số dương $x,y,z$ thoả mãn : $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=4$. Chứng minh rằng: $\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\leq 1.$ Lời giải Đề bài: Cho ba số dương $x,y,z$ thoả mãn : $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=4$. Chứng minh rằng: $\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\leq 1.$ Lời giải … [Đọc thêm...] vềĐề bài: Cho ba số dương $x,y,z$ thoả mãn : $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=4$. Chứng minh rằng: $\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\leq 1.$
Đề bài: Cho $\begin{cases}x,y,z \in [0;1] \\ x+y+z=\frac{3}{2} \end{cases}$Tìm giá trị lớn nhất và giá trị nhỏ nhất của $f(x,y,z)=\cos^2 (x^2+y^2+z^2)$
Đề bài: Cho $\begin{cases}x,y,z \in [0;1] \\ x+y+z=\frac{3}{2} \end{cases}$Tìm giá trị lớn nhất và giá trị nhỏ nhất của $f(x,y,z)=\cos^2 (x^2+y^2+z^2)$ Lời giải Đề bài: Cho $\begin{cases}x,y,z \in [0;1] \\ x+y+z=\frac{3}{2} \end{cases}$Tìm giá trị lớn nhất và giá trị nhỏ nhất của $f(x,y,z)=\cos^2 (x^2+y^2+z^2)$ Lời giải … [Đọc thêm...] vềĐề bài: Cho $\begin{cases}x,y,z \in [0;1] \\ x+y+z=\frac{3}{2} \end{cases}$Tìm giá trị lớn nhất và giá trị nhỏ nhất của $f(x,y,z)=\cos^2 (x^2+y^2+z^2)$
Đề bài: Cho $a,b,c,p,q$ là năm số dương tùy ý. Chứng minh: $\frac{a}{pb+qc}+\frac{b}{pc+qa}+\frac{c}{pa+qb}\geq \frac{3}{p+q} (1)$
Đề bài: Cho $a,b,c,p,q$ là năm số dương tùy ý. Chứng minh: $\frac{a}{pb+qc}+\frac{b}{pc+qa}+\frac{c}{pa+qb}\geq \frac{3}{p+q} (1)$ Lời giải Đề bài: Cho $a,b,c,p,q$ là năm số dương tùy ý. Chứng minh: $\frac{a}{pb+qc}+\frac{b}{pc+qa}+\frac{c}{pa+qb}\geq \frac{3}{p+q} (1)$ Lời giải … [Đọc thêm...] vềĐề bài: Cho $a,b,c,p,q$ là năm số dương tùy ý. Chứng minh: $\frac{a}{pb+qc}+\frac{b}{pc+qa}+\frac{c}{pa+qb}\geq \frac{3}{p+q} (1)$
Đề bài: Cho các số $a_1,a_2,b_1,b_2$. Chứng minh rằng: $\sqrt {{{\left( {{a_1} + {a_2}} \right)}^2} + {{\left( {{b_1} + {b_2}} \right)}^2}} \le \sqrt {{a_1}^2 + {b_1}^2} + \sqrt {{a_2}^2 + {b_2}^2} $
Đề bài: Cho các số $a_1,a_2,b_1,b_2$. Chứng minh rằng: $\sqrt {{{\left( {{a_1} + {a_2}} \right)}^2} + {{\left( {{b_1} + {b_2}} \right)}^2}} \le \sqrt {{a_1}^2 + {b_1}^2} + \sqrt {{a_2}^2 + {b_2}^2} $ Lời giải Đề bài: Cho các số $a_1,a_2,b_1,b_2$. Chứng minh rằng: $\sqrt {{{\left( {{a_1} + {a_2}} \right)}^2} + {{\left( {{b_1} + {b_2}} \right)}^2}} \le … [Đọc thêm...] vềĐề bài: Cho các số $a_1,a_2,b_1,b_2$. Chứng minh rằng: $\sqrt {{{\left( {{a_1} + {a_2}} \right)}^2} + {{\left( {{b_1} + {b_2}} \right)}^2}} \le \sqrt {{a_1}^2 + {b_1}^2} + \sqrt {{a_2}^2 + {b_2}^2} $
Đề bài: Cho \(a,b,c\geq -\frac{3}{4}\) và \(a+b+c=3\). Chứng minh rằng: \(\sqrt{4a+3}+\sqrt{4b+3}+\sqrt{4c+3}\leq 3\sqrt{7}\).
Đề bài: Cho \(a,b,c\geq -\frac{3}{4}\) và \(a+b+c=3\). Chứng minh rằng: \(\sqrt{4a+3}+\sqrt{4b+3}+\sqrt{4c+3}\leq 3\sqrt{7}\). Lời giải Đề bài: Cho \(a,b,c\geq -\frac{3}{4}\) và \(a+b+c=3\). Chứng minh rằng: \(\sqrt{4a+3}+\sqrt{4b+3}+\sqrt{4c+3}\leq 3\sqrt{7}\). Lời giải Áp dụng bất đẳng thức … [Đọc thêm...] vềĐề bài: Cho \(a,b,c\geq -\frac{3}{4}\) và \(a+b+c=3\). Chứng minh rằng: \(\sqrt{4a+3}+\sqrt{4b+3}+\sqrt{4c+3}\leq 3\sqrt{7}\).
Đề bài: Cho $\begin{cases}s,t,u,v \in (0;\frac{\pi}{2}) \\ s+t+u+v=\pi \end{cases}$Chứng minh rằng: $\frac{\sqrt{2}\sin s-1}{\cos s}+\frac{\sqrt{2}\sin t-1}{\cos t}+\frac{\sqrt{2}\sin u-1}{\cos u}+\frac{\sqrt{2}\sin v-1}{\cos v}\geq 0$
Đề bài: Cho $\begin{cases}s,t,u,v \in (0;\frac{\pi}{2}) \\ s+t+u+v=\pi \end{cases}$Chứng minh rằng: $\frac{\sqrt{2}\sin s-1}{\cos s}+\frac{\sqrt{2}\sin t-1}{\cos t}+\frac{\sqrt{2}\sin u-1}{\cos u}+\frac{\sqrt{2}\sin v-1}{\cos v}\geq 0$ Lời giải Đề bài: Cho $\begin{cases}s,t,u,v \in (0;\frac{\pi}{2}) \\ s+t+u+v=\pi \end{cases}$Chứng minh rằng: … [Đọc thêm...] vềĐề bài: Cho $\begin{cases}s,t,u,v \in (0;\frac{\pi}{2}) \\ s+t+u+v=\pi \end{cases}$Chứng minh rằng: $\frac{\sqrt{2}\sin s-1}{\cos s}+\frac{\sqrt{2}\sin t-1}{\cos t}+\frac{\sqrt{2}\sin u-1}{\cos u}+\frac{\sqrt{2}\sin v-1}{\cos v}\geq 0$
Đề bài: Cho ba số nguyên dương $a,b,c$ chứng minh rằng: $\frac{a^3}{b^2-bc+c^2}+\frac{b^3}{a^2-ac+c^2}+\frac{c^3}{a^2-ab+b^2}\geq \frac{3(ab+bc+ca)}{a+b+c} (1)$
Đề bài: Cho ba số nguyên dương $a,b,c$ chứng minh rằng: $\frac{a^3}{b^2-bc+c^2}+\frac{b^3}{a^2-ac+c^2}+\frac{c^3}{a^2-ab+b^2}\geq \frac{3(ab+bc+ca)}{a+b+c} (1)$ Lời giải Đề bài: Cho ba số nguyên dương $a,b,c$ chứng minh rằng: $\frac{a^3}{b^2-bc+c^2}+\frac{b^3}{a^2-ac+c^2}+\frac{c^3}{a^2-ab+b^2}\geq \frac{3(ab+bc+ca)}{a+b+c} (1)$ Lời … [Đọc thêm...] vềĐề bài: Cho ba số nguyên dương $a,b,c$ chứng minh rằng: $\frac{a^3}{b^2-bc+c^2}+\frac{b^3}{a^2-ac+c^2}+\frac{c^3}{a^2-ab+b^2}\geq \frac{3(ab+bc+ca)}{a+b+c} (1)$
Đề bài: Cho $ab+bc+ca=4.$Chứng minh rằng: $a^{4}+b^{4}+c^{4}\geq \frac{16}{3}$
Đề bài: Cho $ab+bc+ca=4.$Chứng minh rằng: $a^{4}+b^{4}+c^{4}\geq \frac{16}{3}$ Lời giải Đề bài: Cho $ab+bc+ca=4.$Chứng minh rằng: $a^{4}+b^{4}+c^{4}\geq \frac{16}{3}$ Lời giải Áp dụng bất đẳng thức Bunhiacopski $2$ lần:$16=\left ( ab+bc+ca \right )^{2}\leq \left ( a^{2}+b^{2}+c^{2} \right … [Đọc thêm...] vềĐề bài: Cho $ab+bc+ca=4.$Chứng minh rằng: $a^{4}+b^{4}+c^{4}\geq \frac{16}{3}$