• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Trắc nghiệm Toán 12
  • Máy tính

Đề bài: Cho \(a,b,c\geq -\frac{3}{4}\) và \(a+b+c=3\). Chứng minh rằng: \(\sqrt{4a+3}+\sqrt{4b+3}+\sqrt{4c+3}\leq 3\sqrt{7}\).

Đăng ngày: 11/07/2021 Biên tập: admin Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức Bunhiacốpxki

adsense
Đề bài: Cho \(a,b,c\geq
-\frac{3}{4}\) và \(a+b+c=3\). Chứng minh rằng:

\(\sqrt{4a+3}+\sqrt{4b+3}+\sqrt{4c+3}\leq
3\sqrt{7}\).

Bat dang thuc

Lời giải

adsense

Đề bài:
Cho \(a,b,c\geq
-\frac{3}{4}\) và \(a+b+c=3\). Chứng minh rằng:

\(\sqrt{4a+3}+\sqrt{4b+3}+\sqrt{4c+3}\leq
3\sqrt{7}\).
Lời giải

Áp dụng bất đẳng thức Bunhiacopski, ta có:
\((1.\sqrt{4a+3}+1.\sqrt{4b+3}+1.\sqrt{4c+3})^{2}\leq (1+1+1)(4a+3+4b+3+4c+3)\)
\(\leq 3[4(a+b+c)+9]=3[4.3+9]=63\)
Vậy: \(\sqrt{4a+3}+\sqrt{4b+3}+\sqrt{4c+3}\leq 3\sqrt{7}\). Đpcm.

=========
Chuyên mục: Bất đẳng thức Bunhiacốpxki

Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức Bunhiacốpxki

Bài liên quan:

  1. Đề bài:  Cho $a_1,a_2,…a_n,b_1,b_2,…,b_n$ là các số dương. Chứng minh      $\sqrt[n]{(a_1+b_1)(a_2+b_2)…(a_n+b_n)} \geq \sqrt[n]{a_1a_2…a_n}+\sqrt[n]{b_1b_2…b_3}$
  2. Đề bài: Cho: $\begin{cases}x^{2}+y^{2}=4 \\ z^{2}+t^{2}=9\\xt+yz\geq 6 \end{cases}$Chứng minh rằng: $xz \leq 3$
  3. Đề bài: Cho $a,b,c$ là $3$ cạnh $\triangle ABC,S$ là diện tích.Nếu  $p,q,r>0$ thì: $\frac{p}{q+r}a^{2}+\frac{q}{r+p}b^{2}+\frac{r}{p+q}c^{2} \geq 2\sqrt{3}S$
  4. Đề bài: $\alpha ,\beta , \gamma $  là 3 góc dương thỏa mãn điều kiện $\alpha  + \beta  + \gamma  = \frac{\pi }{2}$Tìm giá trị lớn nhất của biểu thức:  $g = \sqrt {1 + \tan\alpha \tan\beta }  + \sqrt {1 + \tan\beta \tan\gamma }  + \sqrt {1 + \tan\gamma \tan\alpha } $
  5. Đề bài: Cho:$x^{2}+y^{2}=u^{2}+v^{2}=1$.Chứng minh rằng:$-\sqrt{2}\leq x(u+v)+y(u-v)\leq \sqrt{2}$
  6. Đề bài: Cho $a
  7. Đề bài: $1.$ Giải phương trình: $\sqrt{3}\sin x+\cos x=\frac{1}{\cos x}  $$2.$ Tìm giá trị lớn nhất của hàm số:   $y=\sin x\sqrt{\cos x}+\cos x\sqrt{\sin x}  $
  8. Đề bài: Giải bất phương trình:              $|x|\sqrt{1-x}+|x-1|\sqrt{x}\leq 1$
  9. Đề bài: Cho $n \in Z,n \geq 1; a,b,c>0$.Chứng minh rằng:$\frac{a^{n}}{b+c}+\frac{b^{n}}{c+a}+\frac{c^{n}}{a+b} \geq \frac{3}{2}(\frac{a+b+c}{3})^{n-1}$
  10. Đề bài:  Cho phương trình $\sqrt{x+1}+\sqrt{4-x}+\sqrt{(x+1)(4-x)}=m                              (1)$Tìm $m$ để phương trình có nghiệm duy nhất.
  11. Đề bài: Cho các số thực $x,y,z,t$ thỏa mãn $xyzt=1$. Chứng minh rằng:  $\frac{1}{x^3(yz+zt+ty)}+\frac{1}{y^3(xz+zt+tx)}+\frac{1}{z^3(xt+ty+yz)}+\frac{1}{t^3(xy+yz+zx)}\geq \frac{4}{3} .  (1)$
  12. Đề bài: Cho ba số dương $x,y,z$ thoả mãn : $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=4$. Chứng minh rằng: $\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\leq 1.$
  13. Đề bài: Cho  $\begin{cases}x,y,z \in [0;1] \\ x+y+z=\frac{3}{2} \end{cases}$Tìm giá trị lớn nhất  và giá trị nhỏ nhất của  $f(x,y,z)=\cos^2 (x^2+y^2+z^2)$
  14. Đề bài: Cho $a,b,c,p,q$ là năm số dương tùy ý. Chứng minh:         $\frac{a}{pb+qc}+\frac{b}{pc+qa}+\frac{c}{pa+qb}\geq \frac{3}{p+q}             (1)$
  15. Đề bài: Cho các số $a_1,a_2,b_1,b_2$. Chứng minh rằng:    $\sqrt {{{\left( {{a_1} + {a_2}} \right)}^2} + {{\left( {{b_1} + {b_2}} \right)}^2}}  \le \sqrt {{a_1}^2 + {b_1}^2}  + \sqrt {{a_2}^2 + {b_2}^2} $

Reader Interactions

Trả lời Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC




Booktoan.com (2015 - 2023) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
THÔNG TIN:
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.