• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Trắc nghiệm Toán 12
  • Máy tính

Đề bài: Chứng minh rằng với ba số thực $a,b,c$ thỏa mãn $ab+bc+ca=4$. ta luôn có:   $a^4+b^4+c^4\geq \frac{16}{3}$

Đăng ngày: 11/07/2021 Biên tập: admin Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức Bunhiacốpxki

adsense
Đề bài: Chứng minh rằng với ba số thực $a,b,c$ thỏa mãn $ab+bc+ca=4$. ta luôn có:   $a^4+b^4+c^4\geq \frac{16}{3}$

Bat dang thuc

Lời giải

Đề bài:
Chứng minh rằng với ba số thực $a,b,c$ thỏa mãn $ab+bc+ca=4$. ta luôn có:   $a^4+b^4+c^4\geq \frac{16}{3}$
Lời giải

adsense

Áp dụng bất đẳng thức bunhiacôpski ta có:
   $
\displaystyle VT=\frac{1}{3}(1^2+1^2+1^2)(a^4+b^4+c^4)\geq \frac{1}{3}(a^2+b^2+c^2)^2$
              $
\displaystyle \geq \frac{1}{3}(a^2+b^2+c^2)(b^2+c^2+a^2)\geq \frac{1}{3}(ab+bc+ca)^2=\frac{16}{3}$, đpcm.
Dấu $”=”$ xảy ra khi :
    $
\displaystyle \begin{cases}ab+bc+ca=4 \\ a=b=c \end{cases}\Leftrightarrow a=b=c=\pm \frac{2}{\sqrt{3}}$

=========
Chuyên mục: Bất đẳng thức Bunhiacốpxki

Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức Bunhiacốpxki

Bài liên quan:

  1. Đề bài: Cho $f$ liên tục trên $[a;+\infty ) (a>0)$ thỏa $ \int\limits_{a}^{t}f^2(x)dx \leq  \int\limits_{a}^{t} x^2dx, \forall t \geq a$.Chứng minh rằng : $\int\limits_{a}^{t}f(x)dx \leq  \int\limits_{a}^{t} xdx, \forall t \geq a.$
  2. Đề bài: Cho: $\begin{cases}a_{1}a_{2}…a_{n}>0\left ( n\in Z,n\geq 2 \right ) \\a_{1}a_{2}+a_{2}a_{3}+…+a_{n-1}a_{n}+a_{n}a_{1}=1\\S=\sum\limits_{i=1}^n a_{i}  \end{cases}$Chứng minh rằng :$\sum\limits_{i=1}^n \frac{a_{i}^{3}}{S-a_{i}}\geq \frac{1}{n-1}$
  3. Đề bài: Chứng minh rằng : $\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\leq \sqrt{6}$.Trong đó $a,b,c$ là các số thực không âm thỏa mãn $a+b+c=1$.
  4. Đề bài: Biện luận theo tham số $a$ về số nghiệm của phương trình :$\sqrt {2 – x^2} {sinx} + \sqrt {2 + x^2} \cos x = \left| {a + 1} \right| + \left| {a – 1} \right|$
  5. Đề bài: Cho: $36x^{2}+16y^{2}=9$.Chứng minh rằng:$\frac{15}{4}\leq y-2x+5 \leq \frac{25}{4}$
  6. Đề bài: Cho các số thực $x,y\geq 1$ chứng minh rằng:     $x\sqrt{y-1}+y\sqrt{x-1}\leq xy$
  7. Đề bài: Cho $n$ là một số tự nhiên và $a \in [ 0; n ]$. Tìm giá trị lớn nhất của biểu thức                           $| {\sum\limits_{i = 1}^n {\sin 2x_i} }|$, biết rằng $\sum\limits_{i = 1}^n {\sin^2}{x_i}  = a$
  8. Đề bài:   Tìm giá trị lớn nhất của hàm số $y=\sqrt{x-2}+\sqrt{4-x}$. Sử dụng kết quả tìm được để giải phương trình :           $\sqrt{x-2}+\sqrt{4-x}=x^2-6x+11$
  9. Đề bài: Cho $a,b,c$ là $3$ cạnh $\triangle ABC,S$ là diện tích.Nếu  $p,q,r>0$ thì: $\frac{p}{q+r}a^{2}+\frac{q}{r+p}b^{2}+\frac{r}{p+q}c^{2} \geq 2\sqrt{3}S$
  10. Đề bài:  Cho $a_1,a_2,…a_n,b_1,b_2,…,b_n$ là các số dương. Chứng minh      $\sqrt[n]{(a_1+b_1)(a_2+b_2)…(a_n+b_n)} \geq \sqrt[n]{a_1a_2…a_n}+\sqrt[n]{b_1b_2…b_3}$
  11. Đề bài: Cho: $\begin{cases}x^{2}+y^{2}=4 \\ z^{2}+t^{2}=9\\xt+yz\geq 6 \end{cases}$Chứng minh rằng: $xz \leq 3$
  12. Đề bài: Cho $a
  13. Đề bài: $\alpha ,\beta , \gamma $  là 3 góc dương thỏa mãn điều kiện $\alpha  + \beta  + \gamma  = \frac{\pi }{2}$Tìm giá trị lớn nhất của biểu thức:  $g = \sqrt {1 + \tan\alpha \tan\beta }  + \sqrt {1 + \tan\beta \tan\gamma }  + \sqrt {1 + \tan\gamma \tan\alpha } $
  14. Đề bài: Cho:$x^{2}+y^{2}=u^{2}+v^{2}=1$.Chứng minh rằng:$-\sqrt{2}\leq x(u+v)+y(u-v)\leq \sqrt{2}$
  15. Đề bài: Cho $n \in Z,n \geq 1; a,b,c>0$.Chứng minh rằng:$\frac{a^{n}}{b+c}+\frac{b^{n}}{c+a}+\frac{c^{n}}{a+b} \geq \frac{3}{2}(\frac{a+b+c}{3})^{n-1}$

Reader Interactions

Trả lời Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC




Booktoan.com (2015 - 2023) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
THÔNG TIN:
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.