• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Toán 12
  • Toán 11
  • Toán 10
  • Trắc nghiệm
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán
Bạn đang ở:Trang chủ / Bất đẳng thức - Bài tập tự luận / Đề bài: Cho $f : [0;1] \rightarrow  [1;2]$ liên tục trên $[0;1]$ thỏa : $ \int\limits_{0}^{1}f(x)dx = \frac{3}{2}.$Chứng minh rằng : $ \frac{2}{3} \leq  \int\limits_{0}^{1}\frac{dx}{f(x)} < \frac{3}{4}.$

Đề bài: Cho $f : [0;1] \rightarrow  [1;2]$ liên tục trên $[0;1]$ thỏa : $ \int\limits_{0}^{1}f(x)dx = \frac{3}{2}.$Chứng minh rằng : $ \frac{2}{3} \leq  \int\limits_{0}^{1}\frac{dx}{f(x)} < \frac{3}{4}.$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức Bunhiacốpxki

Đề bài: Cho $f : [0;1] \rightarrow  [1;2]$ liên tục trên $[0;1]$ thỏa : $ \int\limits_{0}^{1}f(x)dx = \frac{3}{2}.$Chứng minh rằng : $ \frac{2}{3} \leq  \int\limits_{0}^{1}\frac{dx}{f(x)} < \frac{3}{4}.$

Bat dang thuc

Lời giải

Đề bài:
Cho $f : [0;1] \rightarrow  [1;2]$ liên tục trên $[0;1]$ thỏa : $ \int\limits_{0}^{1}f(x)dx = \frac{3}{2}.$Chứng minh rằng : $ \frac{2}{3} \leq  \int\limits_{0}^{1}\frac{dx}{f(x)} < \frac{3}{4}.$
Lời giải

Trước hết ta nhận thấy rằng : $ 1 \leq  f(x) \leq  2 , \forall x \in  [0;1]$
$ \Rightarrow \frac{1}{f(x)} \geq \frac{1}{2} , \forall x  \in  [0;1]  \Rightarrow  \int\limits_{0}^{1} \frac{dx}{f(x)} \geq \frac{1}{2} , \forall x \in  [0;1] $
Theo bất đẳng thức Bu-nhi-a-cốp-ski:
        $ 1 = \left ( \int\limits_{0}^{1} \sqrt{f(x)}. \frac{1}{\sqrt{f(x)} }dx    \right )^2 \leq  \int\limits_{0}^{1} f(x)dx . \int\limits_{0}^{1}\frac{dx}{f(x)} = \frac{3}{2} \int\limits_{0}^{1} \frac{dx}{f(x)}$
         $\Rightarrow \frac{2}{3} \leq  \int\limits_{0}^{1} \frac{dx}{f(x)}$
Măt khác, ta có : $[f(x) – 1].[f(x)-2] \leq  0 , \forall x  \in  [0;1]$
                      $\Rightarrow [f(x)]^2 – 3f(x) + 2 \leq  0 , \forall x  \in  [0;1]$
                      $\Rightarrow f(x) + \frac{2}{f(x)} \leq  3, \forall x  \in  [0;1]$
Để ý rằng dấu $”=”$ không thể xảy ra với mọi $ x \in  [0;1]$. Quả vậy, nếu dấu $”=”$ xảy ra với mọi $ x \in  [0;1]$ thì $ f  \equiv  1$ hoặc $f \equiv  2 $
Bởi vậy nếu có $ x_1, x_2 \in  [0;1]$ sao cho $ f(x_1) =1  và  f(x_2) = 2$ thì có $x_3 \in  [0;1]$ để $ f(x_3) = \frac{3}{2},$ mâu thuẫn.
Do vậy chỉ có thể :
* Hoặc $ f(x) =1 , \forall x \in  [0;1] \Rightarrow \int\limits_{0}^{1}f(x)dx  =1 $ ( mâu thuẫn)
* Hoặc $ f(x) =2 , \forall x \in  [0;1] \Rightarrow \int\limits_{0}^{1}f(x)dx = 2 $ ( mâu thuẫn )
Thành thử , ta đi đến kết luận : $ f(x) = \frac{2}{f(x)} $\Rightarrow \int\limits_{0}^{1} f(x)dx + 2 \int\limits_{0}^{1} \frac{dx}{f(x)}  Tóm lại : $\frac{2}{3} \leq  \int\limits_{0}^{1} \frac{dx}{f(x)}

=========
Chuyên mục: Bất đẳng thức Bunhiacốpxki

Bài liên quan:

  1. Đề bài: Cho  $\begin{cases}x,y,z \in [0;1] \\ x+y+z=\frac{3}{2} \end{cases}$Tìm giá trị lớn nhất  và giá trị nhỏ nhất của  $f(x,y,z)=\cos^2 (x^2+y^2+z^2)$
  2. Đề bài: Cho $a,b,c,p,q$ là năm số dương tùy ý. Chứng minh:         $\frac{a}{pb+qc}+\frac{b}{pc+qa}+\frac{c}{pa+qb}\geq \frac{3}{p+q}             (1)$
  3. Đề bài: Cho các số $a_1,a_2,b_1,b_2$. Chứng minh rằng:    $\sqrt {{{\left( {{a_1} + {a_2}} \right)}^2} + {{\left( {{b_1} + {b_2}} \right)}^2}}  \le \sqrt {{a_1}^2 + {b_1}^2}  + \sqrt {{a_2}^2 + {b_2}^2} $
  4. Đề bài: Cho  $\begin{cases}s,t,u,v \in (0;\frac{\pi}{2}) \\ s+t+u+v=\pi \end{cases}$Chứng minh rằng:  $\frac{\sqrt{2}\sin s-1}{\cos s}+\frac{\sqrt{2}\sin t-1}{\cos t}+\frac{\sqrt{2}\sin u-1}{\cos u}+\frac{\sqrt{2}\sin v-1}{\cos v}\geq 0$
  5. Đề bài: Cho ba số nguyên dương $a,b,c$ chứng minh rằng:    $\frac{a^3}{b^2-bc+c^2}+\frac{b^3}{a^2-ac+c^2}+\frac{c^3}{a^2-ab+b^2}\geq \frac{3(ab+bc+ca)}{a+b+c}          (1)$
  6. Đề bài: Cho $ab+bc+ca=4.$Chứng minh rằng: $a^{4}+b^{4}+c^{4}\geq \frac{16}{3}$
  7. Đề bài: Cho \(a,b,c\geq -\frac{3}{4}\) và \(a+b+c=3\). Chứng minh rằng: \(\sqrt{4a+3}+\sqrt{4b+3}+\sqrt{4c+3}\leq 3\sqrt{7}\).
  8. Đề bài: Cho $y=\sqrt{acos^2x+bsin^2x+c}+\sqrt{asin^2x+bcos^2x+c}  $Với $a > 0,b > 0,c > 0$.  Tìm $\min y, \max y$
  9. Đề bài: Cho ba số thực dương $a,b,c$ chứng minh rằng:    $\frac{c^2}{a+b}+\frac{a^2}{b+c}+\frac{b^2}{c+a}\geq \frac{a+b+c}{2}$
  10. Đề bài: Cho $a,b,c>0$ và $a+b+c=1$ thì $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\geq 9$
  11. Đề bài: Cho \(6x+y=5\). Chứng minh rằng: \(9x^{2}+y^{2}\geq 5\).
  12. Đề bài: Với $a,b,c,x,y,z$ là những số thực bất kì, chứng minh rằng :$|ax+by+cz|\leq  \sqrt{a^2+b^2+c^2}.\sqrt{x^2+y^2+z^2}  $
  13. Đề bài: Cho các số thực $a,b$ thỏa mãn $a,b\geq 1$. Chứng minh rằng:   $\sqrt{\ln a}+\sqrt{\ln b}\leq 2\sqrt{\ln\frac{a+b}{2}}$
  14. Đề bài: Cho $a^{2}+b^{2}=1$.Chứng minh: $a\sqrt{b+1}+b\sqrt{a+1}\leq \sqrt{2+\sqrt{2}}$
  15. Đề bài: Cho $x,y,z>0$. Chứng minh : $\frac{x}{y+2z}+\frac{y}{z+2x}+\frac{z}{x+2y}\geq 1$.

Reader Interactions

Để lại một bình luận Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.