• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Toán 12
  • Toán 11
  • Toán 10
  • Trắc nghiệm
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán

Bất đẳng thức Bunhiacốpxki

Đề bài: Cho các số thực $a,b,c$ thỏa mãn $a>b>c>0$. Chứng minh rằng:    $\sqrt{c(a-c)}+\sqrt{c(b-c)}\leq \sqrt{ab}$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức Bunhiacốpxki

Đề bài: Cho các số thực $a,b,c$ thỏa mãn $a>b>c>0$. Chứng minh rằng:    $\sqrt{c(a-c)}+\sqrt{c(b-c)}\leq \sqrt{ab}$ Lời giải Đề bài: Cho các số thực $a,b,c$ thỏa mãn $a>b>c>0$. Chứng minh rằng:    $\sqrt{c(a-c)}+\sqrt{c(b-c)}\leq \sqrt{ab}$ Lời giải Ta có … [Đọc thêm...] vềĐề bài: Cho các số thực $a,b,c$ thỏa mãn $a>b>c>0$. Chứng minh rằng:    $\sqrt{c(a-c)}+\sqrt{c(b-c)}\leq \sqrt{ab}$

Đề bài: Cho: $\begin{cases}a+b+c+d=7 \\ a^{2}+b^{2}+c^{2}+d^{2}=13 \end{cases}$ Chứng minh rằng: $1\leq a,b,c,d\leq \frac{5}{2}$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức Bunhiacốpxki

Đề bài: Cho: $\begin{cases}a+b+c+d=7 \\ a^{2}+b^{2}+c^{2}+d^{2}=13 \end{cases}$ Chứng minh rằng: $1\leq a,b,c,d\leq \frac{5}{2}$ Lời giải Đề bài: Cho: $\begin{cases}a+b+c+d=7 \\ a^{2}+b^{2}+c^{2}+d^{2}=13 \end{cases}$ Chứng minh rằng: $1\leq a,b,c,d\leq \frac{5}{2}$ Lời giải Ta có: … [Đọc thêm...] vềĐề bài: Cho: $\begin{cases}a+b+c+d=7 \\ a^{2}+b^{2}+c^{2}+d^{2}=13 \end{cases}$ Chứng minh rằng: $1\leq a,b,c,d\leq \frac{5}{2}$

Đề bài: Cho $x^2+y^2=1, u^2+v^2=1$. Chứng minh $|x(u+v)+y(u-v)|\leq \sqrt{2}$.

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức Bunhiacốpxki

Đề bài: Cho $x^2+y^2=1, u^2+v^2=1$. Chứng minh $|x(u+v)+y(u-v)|\leq \sqrt{2}$. Lời giải Đề bài: Cho $x^2+y^2=1, u^2+v^2=1$. Chứng minh $|x(u+v)+y(u-v)|\leq \sqrt{2}$. Lời giải Theo bất đẳng thức Bu-nhi-a-cốp-xki ta có:$[x(u+v)+y(u-v)]^2 \leq … [Đọc thêm...] vềĐề bài: Cho $x^2+y^2=1, u^2+v^2=1$. Chứng minh $|x(u+v)+y(u-v)|\leq \sqrt{2}$.

Đề bài: Cho $1\leq n \in N,a_{i} \in R,i=1,2,…,n$.Hãy chứng minh rằng:$(\frac{a_{1}+a_{2}+…+a_{n}}{n})^{2}\leq \frac{a_{1}^{2}+a_{2}^{2}+…+a_{n}^{2}}{n} $

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức Bunhiacốpxki

Đề bài: Cho $1\leq n \in N,a_{i} \in R,i=1,2,...,n$.Hãy chứng minh rằng:$(\frac{a_{1}+a_{2}+...+a_{n}}{n})^{2}\leq \frac{a_{1}^{2}+a_{2}^{2}+...+a_{n}^{2}}{n} $ Lời giải Đề bài: Cho $1\leq n \in N,a_{i} \in R,i=1,2,...,n$.Hãy chứng minh rằng:$(\frac{a_{1}+a_{2}+...+a_{n}}{n})^{2}\leq \frac{a_{1}^{2}+a_{2}^{2}+...+a_{n}^{2}}{n} $ Lời giải … [Đọc thêm...] vềĐề bài: Cho $1\leq n \in N,a_{i} \in R,i=1,2,…,n$.Hãy chứng minh rằng:$(\frac{a_{1}+a_{2}+…+a_{n}}{n})^{2}\leq \frac{a_{1}^{2}+a_{2}^{2}+…+a_{n}^{2}}{n} $

Đề bài: Chứng minh rằng với mọi số thực $a,b,c$ thỏa mãn $a^2+b^2+c^2= 1$, ta có:   $a+2b+3c\leq \sqrt{14}$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức Bunhiacốpxki

Đề bài: Chứng minh rằng với mọi số thực $a,b,c$ thỏa mãn $a^2+b^2+c^2= 1$, ta có:   $a+2b+3c\leq \sqrt{14}$ Lời giải Đề bài: Chứng minh rằng với mọi số thực $a,b,c$ thỏa mãn $a^2+b^2+c^2= 1$, ta có:   $a+2b+3c\leq \sqrt{14}$ Lời giải Sử dụng bất đẳng thức bunhiacôpski ta có ngay:    … [Đọc thêm...] vềĐề bài: Chứng minh rằng với mọi số thực $a,b,c$ thỏa mãn $a^2+b^2+c^2= 1$, ta có:   $a+2b+3c\leq \sqrt{14}$

Đề bài: Chứng minh rằng:$3\left ( a^{2}+b^{2}+1 \right )\geq \left ( a+b+1 \right )^{2}, \forall a,b\in R$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức Bunhiacốpxki

Đề bài: Chứng minh rằng:$3\left ( a^{2}+b^{2}+1 \right )\geq \left ( a+b+1 \right )^{2}, \forall a,b\in R$ Lời giải Đề bài: Chứng minh rằng:$3\left ( a^{2}+b^{2}+1 \right )\geq \left ( a+b+1 \right )^{2}, \forall a,b\in R$ Lời giải Xét hiệu:$3\left ( a^{2}+b^{2}+1 \right )-\left ( a+b+1 \right … [Đọc thêm...] vềĐề bài: Chứng minh rằng:$3\left ( a^{2}+b^{2}+1 \right )\geq \left ( a+b+1 \right )^{2}, \forall a,b\in R$

Đề bài: Cho \(x^{2}+y^{2}=2\) (\(x,y>0\)). Tìm giá trị lớn nhất của \((x+y)xy\).

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức Bunhiacốpxki

Đề bài: Cho \(x^{2}+y^{2}=2\) (\(x,y>0\)). Tìm giá trị lớn nhất của \((x+y)xy\). Lời giải Đề bài: Cho \(x^{2}+y^{2}=2\) (\(x,y>0\)). Tìm giá trị lớn nhất của \((x+y)xy\). Lời giải Ta có: \(x^{2}+y^{2}\geq 2xy \forall x,y \Rightarrow xy\leq 1\)Theo Bunhiacopski, ta có:\(x+y\leq … [Đọc thêm...] vềĐề bài: Cho \(x^{2}+y^{2}=2\) (\(x,y>0\)). Tìm giá trị lớn nhất của \((x+y)xy\).

Đề bài: Chứng minh các bất đẳng thức:a) $(a+b)^4  \leq 8(a^4+b^4) $         b) $a^2(1+b^2)+b^2(1+c^2)+c^2(1+a^2) > 6abc.$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức Bunhiacốpxki

Đề bài: Chứng minh các bất đẳng thức:a) $(a+b)^4  \leq 8(a^4+b^4) $         b) $a^2(1+b^2)+b^2(1+c^2)+c^2(1+a^2) > 6abc.$ Lời giải Đề bài: Chứng minh các bất đẳng thức:a) $(a+b)^4  \leq 8(a^4+b^4) $         b) $a^2(1+b^2)+b^2(1+c^2)+c^2(1+a^2) > 6abc.$ Lời giải  a) Xét $(a+b)^2=(1.a+1.b)^2$Theo … [Đọc thêm...] vềĐề bài: Chứng minh các bất đẳng thức:a) $(a+b)^4  \leq 8(a^4+b^4) $         b) $a^2(1+b^2)+b^2(1+c^2)+c^2(1+a^2) > 6abc.$

Đề bài: Cho ba số thực $a,b,c$ thỏa mãn $a(a-1)+b(b-1)+c(c-1)\leq \frac{4}{3}$.Chứng minh rằng $a+b+c\leq 4$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức Bunhiacốpxki

Đề bài: Cho ba số thực $a,b,c$ thỏa mãn $a(a-1)+b(b-1)+c(c-1)\leq \frac{4}{3}$.Chứng minh rằng $a+b+c\leq 4$ Lời giải Đề bài: Cho ba số thực $a,b,c$ thỏa mãn $a(a-1)+b(b-1)+c(c-1)\leq \frac{4}{3}$.Chứng minh rằng $a+b+c\leq 4$ Lời giải Ta có biến đổi $ \displaystyle \frac{4}{3}\geq … [Đọc thêm...] vềĐề bài: Cho ba số thực $a,b,c$ thỏa mãn $a(a-1)+b(b-1)+c(c-1)\leq \frac{4}{3}$.Chứng minh rằng $a+b+c\leq 4$

Đề bài: Chứng minh rằng : $\int\limits_{0}^{\pi}e ^{\sin^2x}dx > \frac{3\pi}{2}$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức Bunhiacốpxki

Đề bài: Chứng minh rằng : $\int\limits_{0}^{\pi}e ^{\sin^2x}dx > \frac{3\pi}{2}$ Lời giải Đề bài: Chứng minh rằng : $\int\limits_{0}^{\pi}e ^{\sin^2x}dx > \frac{3\pi}{2}$ Lời giải * Đặt $ t = \pi  - x \Rightarrow dt = -dx $Khi đó : $ \int\limits_{\frac{\pi}{2} }^{\pi } e^{\sin ^2x}dx = … [Đọc thêm...] vềĐề bài: Chứng minh rằng : $\int\limits_{0}^{\pi}e ^{\sin^2x}dx > \frac{3\pi}{2}$

  • « Chuyển đến Trang trước
  • Trang 1
  • Trang 2
  • Trang 3
  • Trang 4
  • Trang 5
  • Trang 6
  • Chuyển đến Trang sau »

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.