• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Toán 12
  • Toán 11
  • Toán 10
  • Trắc nghiệm
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán

Bất đẳng thức Bunhiacốpxki

Đề bài: Chứng minh rằng : $\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\leq \sqrt{6}$.Trong đó $a,b,c$ là các số thực không âm thỏa mãn $a+b+c=1$.

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức Bunhiacốpxki

Đề bài: Chứng minh rằng : $\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\leq \sqrt{6}$.Trong đó $a,b,c$ là các số thực không âm thỏa mãn $a+b+c=1$. Lời giải Đề bài: Chứng minh rằng : $\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\leq \sqrt{6}$.Trong đó $a,b,c$ là các số thực không âm thỏa mãn $a+b+c=1$. Lời giải Lần lượt … [Đọc thêm...] vềĐề bài: Chứng minh rằng : $\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\leq \sqrt{6}$.Trong đó $a,b,c$ là các số thực không âm thỏa mãn $a+b+c=1$.

Đề bài: Cho $n$ là một số tự nhiên và $a \in [ 0; n ]$. Tìm giá trị lớn nhất của biểu thức                           $| {\sum\limits_{i = 1}^n {\sin 2x_i} }|$, biết rằng $\sum\limits_{i = 1}^n {\sin^2}{x_i}  = a$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức Bunhiacốpxki

Đề bài: Cho $n$ là một số tự nhiên và $a \in [ 0; n ]$. Tìm giá trị lớn nhất của biểu thức                           $| {\sum\limits_{i = 1}^n {\sin 2x_i} }|$, biết rằng $\sum\limits_{i = 1}^n {\sin^2}{x_i}  = a$ Lời giải Đề bài: Cho $n$ là một số tự nhiên và $a \in [ 0; n ]$. Tìm giá trị lớn nhất của biểu thức                           $| … [Đọc thêm...] vềĐề bài: Cho $n$ là một số tự nhiên và $a \in [ 0; n ]$. Tìm giá trị lớn nhất của biểu thức                           $| {\sum\limits_{i = 1}^n {\sin 2x_i} }|$, biết rằng $\sum\limits_{i = 1}^n {\sin^2}{x_i}  = a$

Đề bài:   Tìm giá trị lớn nhất của hàm số $y=\sqrt{x-2}+\sqrt{4-x}$. Sử dụng kết quả tìm được để giải phương trình :           $\sqrt{x-2}+\sqrt{4-x}=x^2-6x+11$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức Bunhiacốpxki

Đề bài:   Tìm giá trị lớn nhất của hàm số $y=\sqrt{x-2}+\sqrt{4-x}$. Sử dụng kết quả tìm được để giải phương trình :           $\sqrt{x-2}+\sqrt{4-x}=x^2-6x+11$ Lời giải Đề bài:   Tìm giá trị lớn nhất của hàm số $y=\sqrt{x-2}+\sqrt{4-x}$. Sử dụng kết quả tìm được để giải phương trình :           $\sqrt{x-2}+\sqrt{4-x}=x^2-6x+11$ Lời giải … [Đọc thêm...] vềĐề bài:   Tìm giá trị lớn nhất của hàm số $y=\sqrt{x-2}+\sqrt{4-x}$. Sử dụng kết quả tìm được để giải phương trình :           $\sqrt{x-2}+\sqrt{4-x}=x^2-6x+11$

Đề bài: Cho các số thực $x,y\geq 1$ chứng minh rằng:     $x\sqrt{y-1}+y\sqrt{x-1}\leq xy$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức Bunhiacốpxki

Đề bài: Cho các số thực $x,y\geq 1$ chứng minh rằng:     $x\sqrt{y-1}+y\sqrt{x-1}\leq xy$ Lời giải Đề bài: Cho các số thực $x,y\geq 1$ chứng minh rằng:     $x\sqrt{y-1}+y\sqrt{x-1}\leq xy$ Lời giải Lần lượt ta có:       $ \displaystyle x\sqrt{(y-1).1}\leq x.\frac{(y-1)+1}{2}=\frac{xy}{2}$      … [Đọc thêm...] vềĐề bài: Cho các số thực $x,y\geq 1$ chứng minh rằng:     $x\sqrt{y-1}+y\sqrt{x-1}\leq xy$

Đề bài:  Cho $a_1,a_2,…a_n,b_1,b_2,…,b_n$ là các số dương. Chứng minh      $\sqrt[n]{(a_1+b_1)(a_2+b_2)…(a_n+b_n)} \geq \sqrt[n]{a_1a_2…a_n}+\sqrt[n]{b_1b_2…b_3}$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức Bunhiacốpxki

Đề bài:  Cho $a_1,a_2,...a_n,b_1,b_2,...,b_n$ là các số dương. Chứng minh      $\sqrt[n]{(a_1+b_1)(a_2+b_2)...(a_n+b_n)} \geq \sqrt[n]{a_1a_2...a_n}+\sqrt[n]{b_1b_2...b_3}$ Lời giải Đề bài:  Cho $a_1,a_2,...a_n,b_1,b_2,...,b_n$ là các số dương. Chứng minh      $\sqrt[n]{(a_1+b_1)(a_2+b_2)...(a_n+b_n)} \geq \sqrt[n]{a_1a_2...a_n}+\sqrt[n]{b_1b_2...b_3}$ Lời … [Đọc thêm...] vềĐề bài:  Cho $a_1,a_2,…a_n,b_1,b_2,…,b_n$ là các số dương. Chứng minh      $\sqrt[n]{(a_1+b_1)(a_2+b_2)…(a_n+b_n)} \geq \sqrt[n]{a_1a_2…a_n}+\sqrt[n]{b_1b_2…b_3}$

Đề bài: Cho: $\begin{cases}x^{2}+y^{2}=4 \\ z^{2}+t^{2}=9\\xt+yz\geq 6 \end{cases}$Chứng minh rằng: $xz \leq 3$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức Bunhiacốpxki

Đề bài: Cho: $\begin{cases}x^{2}+y^{2}=4 \\ z^{2}+t^{2}=9\\xt+yz\geq 6 \end{cases}$Chứng minh rằng: $xz \leq 3$ Lời giải Đề bài: Cho: $\begin{cases}x^{2}+y^{2}=4 \\ z^{2}+t^{2}=9\\xt+yz\geq 6 \end{cases}$Chứng minh rằng: $xz \leq 3$ Lời giải Theo BĐT Bunhiacopski:$6\leq xt+yz \leq … [Đọc thêm...] vềĐề bài: Cho: $\begin{cases}x^{2}+y^{2}=4 \\ z^{2}+t^{2}=9\\xt+yz\geq 6 \end{cases}$Chứng minh rằng: $xz \leq 3$

Đề bài: Cho $a,b,c$ là $3$ cạnh $\triangle ABC,S$ là diện tích.Nếu  $p,q,r>0$ thì: $\frac{p}{q+r}a^{2}+\frac{q}{r+p}b^{2}+\frac{r}{p+q}c^{2} \geq 2\sqrt{3}S$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức Bunhiacốpxki

Đề bài: Cho $a,b,c$ là $3$ cạnh $\triangle ABC,S$ là diện tích.Nếu  $p,q,r>0$ thì: $\frac{p}{q+r}a^{2}+\frac{q}{r+p}b^{2}+\frac{r}{p+q}c^{2} \geq 2\sqrt{3}S$ Lời giải Đề bài: Cho $a,b,c$ là $3$ cạnh $\triangle ABC,S$ là diện tích.Nếu  $p,q,r>0$ thì: $\frac{p}{q+r}a^{2}+\frac{q}{r+p}b^{2}+\frac{r}{p+q}c^{2} \geq 2\sqrt{3}S$ Lời giải … [Đọc thêm...] vềĐề bài: Cho $a,b,c$ là $3$ cạnh $\triangle ABC,S$ là diện tích.Nếu  $p,q,r>0$ thì: $\frac{p}{q+r}a^{2}+\frac{q}{r+p}b^{2}+\frac{r}{p+q}c^{2} \geq 2\sqrt{3}S$

Đề bài: $\alpha ,\beta , \gamma $  là 3 góc dương thỏa mãn điều kiện $\alpha  + \beta  + \gamma  = \frac{\pi }{2}$Tìm giá trị lớn nhất của biểu thức:  $g = \sqrt {1 + \tan\alpha \tan\beta }  + \sqrt {1 + \tan\beta \tan\gamma }  + \sqrt {1 + \tan\gamma \tan\alpha } $

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức Bunhiacốpxki

Đề bài: $\alpha ,\beta , \gamma $  là 3 góc dương thỏa mãn điều kiện $\alpha  + \beta  + \gamma  = \frac{\pi }{2}$Tìm giá trị lớn nhất của biểu thức:  $g = \sqrt {1 + \tan\alpha \tan\beta }  + \sqrt {1 + \tan\beta \tan\gamma }  + \sqrt {1 + \tan\gamma \tan\alpha } $ Lời giải Đề bài: $\alpha ,\beta , \gamma $  là 3 góc dương thỏa mãn điều kiện $\alpha  + \beta  … [Đọc thêm...] vềĐề bài: $\alpha ,\beta , \gamma $  là 3 góc dương thỏa mãn điều kiện $\alpha  + \beta  + \gamma  = \frac{\pi }{2}$Tìm giá trị lớn nhất của biểu thức:  $g = \sqrt {1 + \tan\alpha \tan\beta }  + \sqrt {1 + \tan\beta \tan\gamma }  + \sqrt {1 + \tan\gamma \tan\alpha } $

Đề bài: Cho:$x^{2}+y^{2}=u^{2}+v^{2}=1$.Chứng minh rằng:$-\sqrt{2}\leq x(u+v)+y(u-v)\leq \sqrt{2}$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức Bunhiacốpxki

Đề bài: Cho:$x^{2}+y^{2}=u^{2}+v^{2}=1$.Chứng minh rằng:$-\sqrt{2}\leq x(u+v)+y(u-v)\leq \sqrt{2}$ Lời giải Đề bài: Cho:$x^{2}+y^{2}=u^{2}+v^{2}=1$.Chứng minh rằng:$-\sqrt{2}\leq x(u+v)+y(u-v)\leq \sqrt{2}$ Lời giải Theo BĐT Bunhiacopski:$|x(u+v)+y(u-v)|\leq … [Đọc thêm...] vềĐề bài: Cho:$x^{2}+y^{2}=u^{2}+v^{2}=1$.Chứng minh rằng:$-\sqrt{2}\leq x(u+v)+y(u-v)\leq \sqrt{2}$

Đề bài: Cho $a

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức Bunhiacốpxki

Đề bài: Cho $a Lời giải Đề bài: Cho $a Lời giải Theo BĐT Bunhiacopski:$c=ax+by \leq \sqrt{a^{2}+b^{2}}\sqrt{x^{2}+y^{2}}=c\sqrt{x^{2}+y^{2}}$(vì: $a^{2}+b^{2}=c^{2} $ do $\Delta ABC $ vuông tại A)$\Rightarrow x^{2}+y^{2} \geq 1 $$\Rightarrow $ (ĐPCM) ========= Chuyên mục: Bất đẳng thức … [Đọc thêm...] vềĐề bài: Cho $a

  • « Chuyển đến Trang trước
  • Trang 1
  • Interim pages omitted …
  • Trang 3
  • Trang 4
  • Trang 5
  • Trang 6
  • Chuyển đến Trang sau »

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.