Đề bài: Chứng minh rằng $\forall a,b > 0,\,\forall x,y \in R$ ta có:$\sqrt {{{25}^x} + {9^y} + 1} .\sqrt {{a^2} + {b^2} + 1} \ge a{.5^x} + b{.3^y} + 1\,\,\,\,(1)$ Lời giải Đề bài: Chứng minh rằng $\forall a,b > 0,\,\forall x,y \in R$ ta có:$\sqrt {{{25}^x} + {9^y} + 1} .\sqrt {{a^2} + {b^2} + 1} \ge a{.5^x} + b{.3^y} + 1\,\,\,\,(1)$ Lời giải … [Đọc thêm...] vềĐề bài: Chứng minh rằng $\forall a,b > 0,\,\forall x,y \in R$ ta có:$\sqrt {{{25}^x} + {9^y} + 1} .\sqrt {{a^2} + {b^2} + 1} \ge a{.5^x} + b{.3^y} + 1\,\,\,\,(1)$
Bất đẳng thức Bunhiacốpxki
Đề bài: Chứng minh rằng với ba số thực $a,b,c$ thỏa mãn $ab+bc+ca=4$. ta luôn có: $a^4+b^4+c^4\geq \frac{16}{3}$
Đề bài: Chứng minh rằng với ba số thực $a,b,c$ thỏa mãn $ab+bc+ca=4$. ta luôn có: $a^4+b^4+c^4\geq \frac{16}{3}$ Lời giải Đề bài: Chứng minh rằng với ba số thực $a,b,c$ thỏa mãn $ab+bc+ca=4$. ta luôn có: $a^4+b^4+c^4\geq \frac{16}{3}$ Lời giải Áp dụng bất đẳng thức bunhiacôpski ta có: … [Đọc thêm...] vềĐề bài: Chứng minh rằng với ba số thực $a,b,c$ thỏa mãn $ab+bc+ca=4$. ta luôn có: $a^4+b^4+c^4\geq \frac{16}{3}$
Đề bài: Cho $f : [0;1] \rightarrow [1;2]$ liên tục trên $[0;1]$ thỏa : $ \int\limits_{0}^{1}f(x)dx = \frac{3}{2}.$Chứng minh rằng : $ \frac{2}{3} \leq \int\limits_{0}^{1}\frac{dx}{f(x)} < \frac{3}{4}.$
Đề bài: Cho $f : [0;1] \rightarrow [1;2]$ liên tục trên $[0;1]$ thỏa : $ \int\limits_{0}^{1}f(x)dx = \frac{3}{2}.$Chứng minh rằng : $ \frac{2}{3} \leq \int\limits_{0}^{1}\frac{dx}{f(x)} < \frac{3}{4}.$ Lời giải Đề bài: Cho $f : [0;1] \rightarrow [1;2]$ liên tục trên $[0;1]$ thỏa : $ \int\limits_{0}^{1}f(x)dx = \frac{3}{2}.$Chứng minh rằng : $ \frac{2}{3} … [Đọc thêm...] vềĐề bài: Cho $f : [0;1] \rightarrow [1;2]$ liên tục trên $[0;1]$ thỏa : $ \int\limits_{0}^{1}f(x)dx = \frac{3}{2}.$Chứng minh rằng : $ \frac{2}{3} \leq \int\limits_{0}^{1}\frac{dx}{f(x)} < \frac{3}{4}.$
Đề bài: Cho ba số dương $a, b, c$ thỏa mãn điều kiện $abc = 1$. Hãy tìm giá trị nhỏ nhất của biểu thức: $P = \frac{bc}{a^2b + a^2c} + \frac{ac}{b^2a + b^2c} + \frac{ab}{c^2a + c^2b}$
Đề bài: Cho ba số dương $a, b, c$ thỏa mãn điều kiện $abc = 1$. Hãy tìm giá trị nhỏ nhất của biểu thức: $P = \frac{bc}{a^2b + a^2c} + \frac{ac}{b^2a + b^2c} + \frac{ab}{c^2a + c^2b}$ Lời giải Đề bài: Cho ba số dương $a, b, c$ thỏa mãn điều kiện $abc = 1$. Hãy tìm giá trị nhỏ nhất của biểu thức: $P = … [Đọc thêm...] vềĐề bài: Cho ba số dương $a, b, c$ thỏa mãn điều kiện $abc = 1$. Hãy tìm giá trị nhỏ nhất của biểu thức: $P = \frac{bc}{a^2b + a^2c} + \frac{ac}{b^2a + b^2c} + \frac{ab}{c^2a + c^2b}$
Đề bài: Chứng minh rằng với ba số thực $a,b,c$ tùy ý, ta có: $ab+bc+ac\leq a^2+b^2+c^2$
Đề bài: Chứng minh rằng với ba số thực $a,b,c$ tùy ý, ta có: $ab+bc+ac\leq a^2+b^2+c^2$ Lời giải Đề bài: Chứng minh rằng với ba số thực $a,b,c$ tùy ý, ta có: $ab+bc+ac\leq a^2+b^2+c^2$ Lời giải Áp dụng bất đẳng thức bunhiacôpski ta có: ${VT}^2=(ab+bc+ca)^2\leq … [Đọc thêm...] vềĐề bài: Chứng minh rằng với ba số thực $a,b,c$ tùy ý, ta có: $ab+bc+ac\leq a^2+b^2+c^2$
Đề bài: Cho $f$ liên tục trên $[a;+\infty ) (a>0)$ thỏa $ \int\limits_{a}^{t}f^2(x)dx \leq \int\limits_{a}^{t} x^2dx, \forall t \geq a$.Chứng minh rằng : $\int\limits_{a}^{t}f(x)dx \leq \int\limits_{a}^{t} xdx, \forall t \geq a.$
Đề bài: Cho $f$ liên tục trên $[a;+\infty ) (a>0)$ thỏa $ \int\limits_{a}^{t}f^2(x)dx \leq \int\limits_{a}^{t} x^2dx, \forall t \geq a$.Chứng minh rằng : $\int\limits_{a}^{t}f(x)dx \leq \int\limits_{a}^{t} xdx, \forall t \geq a.$ Lời giải Đề bài: Cho $f$ liên tục trên $[a;+\infty ) (a>0)$ thỏa $ \int\limits_{a}^{t}f^2(x)dx \leq \int\limits_{a}^{t} x^2dx, … [Đọc thêm...] vềĐề bài: Cho $f$ liên tục trên $[a;+\infty ) (a>0)$ thỏa $ \int\limits_{a}^{t}f^2(x)dx \leq \int\limits_{a}^{t} x^2dx, \forall t \geq a$.Chứng minh rằng : $\int\limits_{a}^{t}f(x)dx \leq \int\limits_{a}^{t} xdx, \forall t \geq a.$
Đề bài: Cho: $\begin{cases}a_{1}a_{2}…a_{n}>0\left ( n\in Z,n\geq 2 \right ) \\a_{1}a_{2}+a_{2}a_{3}+…+a_{n-1}a_{n}+a_{n}a_{1}=1\\S=\sum\limits_{i=1}^n a_{i} \end{cases}$Chứng minh rằng :$\sum\limits_{i=1}^n \frac{a_{i}^{3}}{S-a_{i}}\geq \frac{1}{n-1}$
Đề bài: Cho: $\begin{cases}a_{1}a_{2}...a_{n}>0\left ( n\in Z,n\geq 2 \right ) \\a_{1}a_{2}+a_{2}a_{3}+...+a_{n-1}a_{n}+a_{n}a_{1}=1\\S=\sum\limits_{i=1}^n a_{i} \end{cases}$Chứng minh rằng :$\sum\limits_{i=1}^n \frac{a_{i}^{3}}{S-a_{i}}\geq \frac{1}{n-1}$ Lời giải Đề bài: Cho: $\begin{cases}a_{1}a_{2}...a_{n}>0\left ( n\in Z,n\geq 2 \right ) … [Đọc thêm...] vềĐề bài: Cho: $\begin{cases}a_{1}a_{2}…a_{n}>0\left ( n\in Z,n\geq 2 \right ) \\a_{1}a_{2}+a_{2}a_{3}+…+a_{n-1}a_{n}+a_{n}a_{1}=1\\S=\sum\limits_{i=1}^n a_{i} \end{cases}$Chứng minh rằng :$\sum\limits_{i=1}^n \frac{a_{i}^{3}}{S-a_{i}}\geq \frac{1}{n-1}$
Đề bài: Chứng minh rằng với mọi số thực $x,y$ luôn có: $(x^3+y^3)^2\leq (x^2+y^2)(x^4+y^4)$
Đề bài: Chứng minh rằng với mọi số thực $x,y$ luôn có: $(x^3+y^3)^2\leq (x^2+y^2)(x^4+y^4)$ Lời giải Đề bài: Chứng minh rằng với mọi số thực $x,y$ luôn có: $(x^3+y^3)^2\leq (x^2+y^2)(x^4+y^4)$ Lời giải Ta có thể trình bày theo hai cách sau: Cách $1$: ta có: … [Đọc thêm...] vềĐề bài: Chứng minh rằng với mọi số thực $x,y$ luôn có: $(x^3+y^3)^2\leq (x^2+y^2)(x^4+y^4)$
Đề bài: Biện luận theo tham số $a$ về số nghiệm của phương trình :$\sqrt {2 – x^2} {sinx} + \sqrt {2 + x^2} \cos x = \left| {a + 1} \right| + \left| {a – 1} \right|$
Đề bài: Biện luận theo tham số $a$ về số nghiệm của phương trình :$\sqrt {2 - x^2} {sinx} + \sqrt {2 + x^2} \cos x = \left| {a + 1} \right| + \left| {a - 1} \right|$ Lời giải Đề bài: Biện luận theo tham số $a$ về số nghiệm của phương trình :$\sqrt {2 - x^2} {sinx} + \sqrt {2 + x^2} \cos x = \left| {a + 1} \right| + \left| {a … [Đọc thêm...] vềĐề bài: Biện luận theo tham số $a$ về số nghiệm của phương trình :$\sqrt {2 – x^2} {sinx} + \sqrt {2 + x^2} \cos x = \left| {a + 1} \right| + \left| {a – 1} \right|$
Đề bài: Cho: $36x^{2}+16y^{2}=9$.Chứng minh rằng:$\frac{15}{4}\leq y-2x+5 \leq \frac{25}{4}$
Đề bài: Cho: $36x^{2}+16y^{2}=9$.Chứng minh rằng:$\frac{15}{4}\leq y-2x+5 \leq \frac{25}{4}$ Lời giải Đề bài: Cho: $36x^{2}+16y^{2}=9$.Chứng minh rằng:$\frac{15}{4}\leq y-2x+5 \leq \frac{25}{4}$ Lời giải Theo BĐT Bunhiacopski:$(y-2x)^{2}=(\frac{1}{4}4y-\frac{1}{3}6x)^{2}$$\leq … [Đọc thêm...] vềĐề bài: Cho: $36x^{2}+16y^{2}=9$.Chứng minh rằng:$\frac{15}{4}\leq y-2x+5 \leq \frac{25}{4}$