• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán
Bạn đang ở:Trang chủ / Bất đẳng thức - Bài tập tự luận / Đề bài: Cho $f$ liên tục trên $[a;+\infty ) (a>0)$ thỏa $ \int\limits_{a}^{t}f^2(x)dx \leq  \int\limits_{a}^{t} x^2dx, \forall t \geq a$.Chứng minh rằng : $\int\limits_{a}^{t}f(x)dx \leq  \int\limits_{a}^{t} xdx, \forall t \geq a.$

Đề bài: Cho $f$ liên tục trên $[a;+\infty ) (a>0)$ thỏa $ \int\limits_{a}^{t}f^2(x)dx \leq  \int\limits_{a}^{t} x^2dx, \forall t \geq a$.Chứng minh rằng : $\int\limits_{a}^{t}f(x)dx \leq  \int\limits_{a}^{t} xdx, \forall t \geq a.$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức Bunhiacốpxki

Đề bài: Cho $f$ liên tục trên $[a;+\infty ) (a>0)$ thỏa $ \int\limits_{a}^{t}f^2(x)dx \leq  \int\limits_{a}^{t} x^2dx, \forall t \geq a$.Chứng minh rằng : $\int\limits_{a}^{t}f(x)dx \leq  \int\limits_{a}^{t} xdx, \forall t \geq a.$

Bat dang thuc

Lời giải

Đề bài:
Cho $f$ liên tục trên $[a;+\infty ) (a>0)$ thỏa $ \int\limits_{a}^{t}f^2(x)dx \leq  \int\limits_{a}^{t} x^2dx, \forall t \geq a$.Chứng minh rằng : $\int\limits_{a}^{t}f(x)dx \leq  \int\limits_{a}^{t} xdx, \forall t \geq a.$
Lời giải

Theo bất đẳng thức Bu-nhi-a-cốp-ski :
$ \left ( \int\limits_{a}^{t}xf(x)dx  \right )^2 \leq  \int\limits_{a}^{t} x^2dx. \int\limits_{a}^{t}f^2(x)dx \leq  \left ( \int\limits_{a}^{t}x^2dx  \right )^2, \forall t \geq a$
$\Rightarrow \int\limits_{a}^{t}xf(x)dx \leq  \int\limits_{a}^{t}x^2dx, \forall t \geq a   \Rightarrow  F(t) \equiv  \int\limits_{a}^{t}x[x-f(x)]dx \geq 0 , \forall t \geq a$
Mặt khác : Đặt $ \begin{cases}du=x[x-f(x)]dx \\ v=\frac{1}{x}  \end{cases}  \Rightarrow \begin{cases}u=F(x) \\ dv= -\frac{dx}{x^2} \end{cases}  (Vì  F'(t) = t [t-F(t)])$
$\Rightarrow \int\limits_{a}^{t}[x-f(x)]dx = \left ( \frac{1}{x}F(x)  \right )\left| \begin{array}{l}
t\\
a
\end{array} \right. + \int\limits_{a}^{t}\frac{F(x)}{x^2}dx = \frac{F(t)}{t} + \int\limits_{a}^{t}\frac{F(x)}{x^2}dx \geq 0, \forall x \geq a$
$\Rightarrow \int\limits_{a}^{t}xdx \geq \int\limits_{a}^{t}f(x)dx , \forall t \geq a$      

=========
Chuyên mục: Bất đẳng thức Bunhiacốpxki

Bài liên quan:

  1. Đề bài: Chứng minh rằng với mọi số thực $x,y$ luôn có:   $(x^3+y^3)^2\leq (x^2+y^2)(x^4+y^4)$
  2. Đề bài: Cho:$x^{2}+y^{2}=u^{2}+v^{2}=1$.Chứng minh rằng:$-\sqrt{2}\leq x(u+v)+y(u-v)\leq \sqrt{2}$
  3. Đề bài: Giải bất phương trình:              $|x|\sqrt{1-x}+|x-1|\sqrt{x}\leq 1$
  4. Đề bài: Cho các số thực $x,y,z,t$ thỏa mãn $xyzt=1$. Chứng minh rằng:  $\frac{1}{x^3(yz+zt+ty)}+\frac{1}{y^3(xz+zt+tx)}+\frac{1}{z^3(xt+ty+yz)}+\frac{1}{t^3(xy+yz+zx)}\geq \frac{4}{3} .  (1)$
  5. Đề bài: Cho $a,b,c,p,q$ là năm số dương tùy ý. Chứng minh:         $\frac{a}{pb+qc}+\frac{b}{pc+qa}+\frac{c}{pa+qb}\geq \frac{3}{p+q}             (1)$
  6. Đề bài: Cho ba số nguyên dương $a,b,c$ chứng minh rằng:    $\frac{a^3}{b^2-bc+c^2}+\frac{b^3}{a^2-ac+c^2}+\frac{c^3}{a^2-ab+b^2}\geq \frac{3(ab+bc+ca)}{a+b+c}          (1)$
  7. Đề bài: Cho ba số thực dương $a,b,c$ chứng minh rằng:    $\frac{c^2}{a+b}+\frac{a^2}{b+c}+\frac{b^2}{c+a}\geq \frac{a+b+c}{2}$
  8. Đề bài: Cho các số thực $a,b$ thỏa mãn $a,b\geq 1$. Chứng minh rằng:   $\sqrt{\ln a}+\sqrt{\ln b}\leq 2\sqrt{\ln\frac{a+b}{2}}$
  9. Đề bài: Cho các số thực $a,b,c$ thỏa mãn $a>b>c>0$. Chứng minh rằng:    $\sqrt{c(a-c)}+\sqrt{c(b-c)}\leq \sqrt{ab}$
  10. Đề bài: Chứng minh rằng với mọi số thực $a,b,c$ thỏa mãn $a^2+b^2+c^2= 1$, ta có:   $a+2b+3c\leq \sqrt{14}$
  11. Đề bài: Cho ba số thực $a,b,c$ thỏa mãn $a(a-1)+b(b-1)+c(c-1)\leq \frac{4}{3}$.Chứng minh rằng $a+b+c\leq 4$
  12. Đề bài: Chứng minh rằng với ba số thực $a,b,c$ thỏa mãn $ab+bc+ca=4$. ta luôn có:   $a^4+b^4+c^4\geq \frac{16}{3}$
  13. Đề bài: Chứng minh rằng với ba số thực $a,b,c$ tùy ý, ta có:  $ab+bc+ac\leq a^2+b^2+c^2$
  14. Đề bài: Cho: $\begin{cases}x^{2}+y^{2}=4 \\ z^{2}+t^{2}=9\\xt+yz\geq 6 \end{cases}$Chứng minh rằng: $xz \leq 3$
  15. Đề bài: Chứng minh rằng : $\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\leq \sqrt{6}$.Trong đó $a,b,c$ là các số thực không âm thỏa mãn $a+b+c=1$.

Reader Interactions

Để lại một bình luận Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.