• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán
Bạn đang ở:Trang chủ / Bất đẳng thức - Bài tập tự luận / Đề bài: Cho: $\begin{cases}a_{1}a_{2}…a_{n}>0\left ( n\in Z,n\geq 2 \right ) \\a_{1}a_{2}+a_{2}a_{3}+…+a_{n-1}a_{n}+a_{n}a_{1}=1\\S=\sum\limits_{i=1}^n a_{i}  \end{cases}$Chứng minh rằng :$\sum\limits_{i=1}^n \frac{a_{i}^{3}}{S-a_{i}}\geq \frac{1}{n-1}$

Đề bài: Cho: $\begin{cases}a_{1}a_{2}…a_{n}>0\left ( n\in Z,n\geq 2 \right ) \\a_{1}a_{2}+a_{2}a_{3}+…+a_{n-1}a_{n}+a_{n}a_{1}=1\\S=\sum\limits_{i=1}^n a_{i}  \end{cases}$Chứng minh rằng :$\sum\limits_{i=1}^n \frac{a_{i}^{3}}{S-a_{i}}\geq \frac{1}{n-1}$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức Bunhiacốpxki

Đề bài: Cho: $\begin{cases}a_{1}a_{2}…a_{n}>0\left ( n\in Z,n\geq 2 \right ) \\a_{1}a_{2}+a_{2}a_{3}+…+a_{n-1}a_{n}+a_{n}a_{1}=1\\S=\sum\limits_{i=1}^n a_{i}  \end{cases}$Chứng minh rằng :$\sum\limits_{i=1}^n \frac{a_{i}^{3}}{S-a_{i}}\geq \frac{1}{n-1}$

Bat dang thuc

Lời giải

Đề bài:
Cho: $\begin{cases}a_{1}a_{2}…a_{n}>0\left ( n\in Z,n\geq 2 \right ) \\a_{1}a_{2}+a_{2}a_{3}+…+a_{n-1}a_{n}+a_{n}a_{1}=1\\S=\sum\limits_{i=1}^n a_{i}  \end{cases}$Chứng minh rằng :$\sum\limits_{i=1}^n \frac{a_{i}^{3}}{S-a_{i}}\geq \frac{1}{n-1}$
Lời giải

Theo BĐT Bunhiacopski:
$1=a_{1}a_{2}+a_{2}a_{3}+…+a_{n-1}a_{n}+a_{n}a_{1}$
$\leq \sqrt{{a_{1}}^{2}+{a_{2}}^{2}+…+{a_{n}}^{2}}\sqrt{{a_{2}}^{2}+{a_{3}}^{2}+…+{a_{n}}^{2}+{a_{1}}^{2}}$
$\Rightarrow 1\leq {a_{1}}^{2}+{a_{2}}^{2}+…+{a_{n}}^{2}$  $\left ( 1 \right )$
$\left (  {a_{1}}^{2}+{a_{2}}^{2}+…+{a_{n}}^{2} \right )^{2}=$
$=\left ( \frac{{a_{1}}^{\frac{3}{2}}}{\sqrt{S-a_{1}}}.\sqrt{a_{1}\left ( S-a_{1}
\right )}+\frac{{a_{2}}^{\frac{3}{2}}}{\sqrt{S-a_{2}}}.\sqrt{a_{2}\left
( S-a_{2} \right
)}+…+\frac{{a_{n}}^{\frac{3}{2}}}{\sqrt{S-a_{n}}}.\sqrt{a_{n}\left (
S-a_{n} \right )} \right )^{2}$
$\leq \left ( \sum\limits_{i=1}^n \frac{a_{i}^{3}}{S-a_{i}} \right ).[\sum\limits_{i=1}^n a_{i}\left ( S-a_{i}
\right ) ]= \left ( \sum\limits_{i=1}^n \frac{a_{i}^{3}}{S-a_{i}} \right )[\left ( \sum\limits_{i=1}^n a_{i} \right )^{2}-\sum\limits_{i=1}^n {a_{i}}^{2}]$
$\leq\left ( \sum\limits_{i=1}^n \frac{a_{i}^{3}}{S-a_{i}} \right )\left ( n-1 \right ) \sum\limits_{i=1}^n {a_{i}}^{2} $ (vì $
( \sum\limits_{i=1}^n a_{i}  )^{2}\leq n\sum\limits_{i=1}^n {a_{i}}^{2}]$ 
$\Rightarrow \sum\limits_{i=1}^n \frac{a_{i}^{3}}{S-a_{i}}\geq \frac{{a_{1}}^{2}+{a_{2}}^{2}+…+{a^2_{n}}}{n-1}\geq \frac{1}{n-1}$ (do $\left ( 1 \right )$ )

=========
Chuyên mục: Bất đẳng thức Bunhiacốpxki

Bài liên quan:

  1. Đề bài: Chứng minh rằng với mọi số thực $x,y$ luôn có:   $(x^3+y^3)^2\leq (x^2+y^2)(x^4+y^4)$
  2. Đề bài: Cho:$x^{2}+y^{2}=u^{2}+v^{2}=1$.Chứng minh rằng:$-\sqrt{2}\leq x(u+v)+y(u-v)\leq \sqrt{2}$
  3. Đề bài: Giải bất phương trình:              $|x|\sqrt{1-x}+|x-1|\sqrt{x}\leq 1$
  4. Đề bài: Cho các số thực $x,y,z,t$ thỏa mãn $xyzt=1$. Chứng minh rằng:  $\frac{1}{x^3(yz+zt+ty)}+\frac{1}{y^3(xz+zt+tx)}+\frac{1}{z^3(xt+ty+yz)}+\frac{1}{t^3(xy+yz+zx)}\geq \frac{4}{3} .  (1)$
  5. Đề bài: Cho $a,b,c,p,q$ là năm số dương tùy ý. Chứng minh:         $\frac{a}{pb+qc}+\frac{b}{pc+qa}+\frac{c}{pa+qb}\geq \frac{3}{p+q}             (1)$
  6. Đề bài: Cho ba số nguyên dương $a,b,c$ chứng minh rằng:    $\frac{a^3}{b^2-bc+c^2}+\frac{b^3}{a^2-ac+c^2}+\frac{c^3}{a^2-ab+b^2}\geq \frac{3(ab+bc+ca)}{a+b+c}          (1)$
  7. Đề bài: Cho ba số thực dương $a,b,c$ chứng minh rằng:    $\frac{c^2}{a+b}+\frac{a^2}{b+c}+\frac{b^2}{c+a}\geq \frac{a+b+c}{2}$
  8. Đề bài: Cho các số thực $a,b$ thỏa mãn $a,b\geq 1$. Chứng minh rằng:   $\sqrt{\ln a}+\sqrt{\ln b}\leq 2\sqrt{\ln\frac{a+b}{2}}$
  9. Đề bài: Cho các số thực $a,b,c$ thỏa mãn $a>b>c>0$. Chứng minh rằng:    $\sqrt{c(a-c)}+\sqrt{c(b-c)}\leq \sqrt{ab}$
  10. Đề bài: Chứng minh rằng với mọi số thực $a,b,c$ thỏa mãn $a^2+b^2+c^2= 1$, ta có:   $a+2b+3c\leq \sqrt{14}$
  11. Đề bài: Cho ba số thực $a,b,c$ thỏa mãn $a(a-1)+b(b-1)+c(c-1)\leq \frac{4}{3}$.Chứng minh rằng $a+b+c\leq 4$
  12. Đề bài: Chứng minh rằng với ba số thực $a,b,c$ thỏa mãn $ab+bc+ca=4$. ta luôn có:   $a^4+b^4+c^4\geq \frac{16}{3}$
  13. Đề bài: Chứng minh rằng với ba số thực $a,b,c$ tùy ý, ta có:  $ab+bc+ac\leq a^2+b^2+c^2$
  14. Đề bài: Cho: $\begin{cases}x^{2}+y^{2}=4 \\ z^{2}+t^{2}=9\\xt+yz\geq 6 \end{cases}$Chứng minh rằng: $xz \leq 3$
  15. Đề bài: Chứng minh rằng : $\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\leq \sqrt{6}$.Trong đó $a,b,c$ là các số thực không âm thỏa mãn $a+b+c=1$.

Reader Interactions

Để lại một bình luận Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.