• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Sách toán
  • Đề thi
  • Ôn thi THPT Quốc gia Môn Toán
  • Trắc nghiệm toán 12
  • Máy tính

Đề bài: Cho ba số dương $a, b, c$ thỏa mãn điều kiện $abc = 1$. Hãy tìm giá trị nhỏ nhất của biểu thức:                            $P = \frac{bc}{a^2b + a^2c} + \frac{ac}{b^2a + b^2c} + \frac{ab}{c^2a + c^2b}$

Đăng ngày: 11/07/2021 Biên tập: admin Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức Bunhiacốpxki

Đề bài: Cho ba số dương $a, b, c$ thỏa mãn điều kiện $abc = 1$. Hãy tìm giá trị nhỏ nhất của biểu thức:                            $P = \frac{bc}{a^2b + a^2c} + \frac{ac}{b^2a + b^2c} + \frac{ab}{c^2a + c^2b}$

Bat dang thuc

Lời giải

Đề bài:
Cho ba số dương $a, b, c$ thỏa mãn điều kiện $abc = 1$. Hãy tìm giá trị nhỏ nhất của biểu thức:                            $P = \frac{bc}{a^2b + a^2c} + \frac{ac}{b^2a + b^2c} + \frac{ab}{c^2a + c^2b}$
Lời giải

Có: $\frac{{bc}}{{{a^2}b + {a^2}c}} = \frac{{bc}}{{{a^2}\left( {b + c} \right)}} =
\frac{1}{{{a^2}\left( {\frac{1}{b} + \frac{1}{c}} \right)}} = \frac{{\frac{1}{{{a^2}}}}}{{\left(
{\frac{1}{b} + \frac{1}{c}} \right)}}$
Đặt $x = \frac{1}{a}\,;\,\,\,y = \frac{1}{b}\,\,\,;\,\,z = \frac{1}{c}$ thì giả thiết $a, b, c > 0; abc = 1$
$ \Leftrightarrow x,y,z > 0\,\,\,;\,\,xyz = 1\,;\,\,P = \frac{{{x^2}}}{{y + z}} + \frac{{{y^2}}}{{z +
x}} + \frac{{{z^2}}}{{y + x}}$
Theo bất đẳng thức Bunhiacopxki:
$\begin{array}{l}
(y + z + z + x + x + y).P \ge {\left( {\sqrt {y + z} \frac{x}{{\sqrt {y + z} }} + \sqrt {x + z}
\frac{y}{{\sqrt {x + z} }} + \sqrt {y + x} \frac{z}{{\sqrt {y + x} }}} \right)^2}\\
 \Rightarrow 2(x + y + z).P \ge {(x + y + z)^2}\\
 \Rightarrow P \ge \frac{1}{2}(x + y + z) \ge \frac{1}{2}.3\sqrt[3]{{xyz}} = \frac{1}{2}.3
\Rightarrow P \ge \frac{3}{2}
\end{array}$
Nếu $P = \frac{3}{2}$ thì $x = y = z = 1$ suy ra $a = b = c = 1$
Đảo lại, nếu $a = b = c = 1$ thì $P = \frac{3}{2}$.Vậy $\min P = \frac{3}{2}$

=========
Chuyên mục: Bất đẳng thức Bunhiacốpxki

Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức Bunhiacốpxki

Bài liên quan:

  1. Đề bài: Cho  $\begin{cases}x,y,z \in [0;1] \\ x+y+z=\frac{3}{2} \end{cases}$Tìm giá trị lớn nhất  và giá trị nhỏ nhất của  $f(x,y,z)=\cos^2 (x^2+y^2+z^2)$
  2. Đề bài: Cho ba số nguyên dương $a,b,c$ chứng minh rằng:    $\frac{a^3}{b^2-bc+c^2}+\frac{b^3}{a^2-ac+c^2}+\frac{c^3}{a^2-ab+b^2}\geq \frac{3(ab+bc+ca)}{a+b+c}          (1)$
  3. Đề bài: Cho $ab+bc+ca=4.$Chứng minh rằng: $a^{4}+b^{4}+c^{4}\geq \frac{16}{3}$
  4. Đề bài: Cho \(a,b,c\geq -\frac{3}{4}\) và \(a+b+c=3\). Chứng minh rằng: \(\sqrt{4a+3}+\sqrt{4b+3}+\sqrt{4c+3}\leq 3\sqrt{7}\).
  5. Đề bài: Cho  $\begin{cases}s,t,u,v \in (0;\frac{\pi}{2}) \\ s+t+u+v=\pi \end{cases}$Chứng minh rằng:  $\frac{\sqrt{2}\sin s-1}{\cos s}+\frac{\sqrt{2}\sin t-1}{\cos t}+\frac{\sqrt{2}\sin u-1}{\cos u}+\frac{\sqrt{2}\sin v-1}{\cos v}\geq 0$
  6. Đề bài: Cho ba số thực dương $a,b,c$ chứng minh rằng:    $\frac{c^2}{a+b}+\frac{a^2}{b+c}+\frac{b^2}{c+a}\geq \frac{a+b+c}{2}$
  7. Đề bài: Cho $a,b,c>0$ và $a+b+c=1$ thì $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\geq 9$
  8. Đề bài: Cho \(6x+y=5\). Chứng minh rằng: \(9x^{2}+y^{2}\geq 5\).
  9. Đề bài: Cho $y=\sqrt{acos^2x+bsin^2x+c}+\sqrt{asin^2x+bcos^2x+c}  $Với $a > 0,b > 0,c > 0$.  Tìm $\min y, \max y$
  10. Đề bài: Cho các số thực $a,b$ thỏa mãn $a,b\geq 1$. Chứng minh rằng:   $\sqrt{\ln a}+\sqrt{\ln b}\leq 2\sqrt{\ln\frac{a+b}{2}}$
  11. Đề bài: Cho $a^{2}+b^{2}=1$.Chứng minh: $a\sqrt{b+1}+b\sqrt{a+1}\leq \sqrt{2+\sqrt{2}}$
  12. Đề bài: Cho $x,y,z>0$. Chứng minh : $\frac{x}{y+2z}+\frac{y}{z+2x}+\frac{z}{x+2y}\geq 1$.
  13. Đề bài: Với $a,b,c,x,y,z$ là những số thực bất kì, chứng minh rằng :$|ax+by+cz|\leq  \sqrt{a^2+b^2+c^2}.\sqrt{x^2+y^2+z^2}  $
  14. Đề bài: Cho các số thực $a,b,c$ thỏa mãn $a>b>c>0$. Chứng minh rằng:    $\sqrt{c(a-c)}+\sqrt{c(b-c)}\leq \sqrt{ab}$
  15. Đề bài: Cho: $\begin{cases}a+b+c+d=7 \\ a^{2}+b^{2}+c^{2}+d^{2}=13 \end{cases}$ Chứng minh rằng: $1\leq a,b,c,d\leq \frac{5}{2}$

Reader Interactions

Trả lời Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC




Booktoan.com (2015 - 2022) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
THÔNG TIN:
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.