Đề bài: Cho \(6x+y=5\). Chứng minh rằng: \(9x^{2}+y^{2}\geq 5\). Lời giải Đề bài: Cho \(6x+y=5\). Chứng minh rằng: \(9x^{2}+y^{2}\geq 5\). Lời giải Ta có:Áp dụng bất đẳng thức Bunhiacopski, ta có:\(25=(6x+y)^{2}=[2(3x)+1.y]^{2}\leq [2^{2}+1^{2}][(3x)^{2}+y^{2}]\). ========= Chuyên mục: Bất … [Đọc thêm...] vềĐề bài: Cho \(6x+y=5\). Chứng minh rằng: \(9x^{2}+y^{2}\geq 5\).
Bất đẳng thức Bunhiacốpxki
Đề bài: Cho $y=\sqrt{acos^2x+bsin^2x+c}+\sqrt{asin^2x+bcos^2x+c} $Với $a > 0,b > 0,c > 0$. Tìm $\min y, \max y$
Đề bài: Cho $y=\sqrt{acos^2x+bsin^2x+c}+\sqrt{asin^2x+bcos^2x+c} $Với $a > 0,b > 0,c > 0$. Tìm $\min y, \max y$ Lời giải Đề bài: Cho $y=\sqrt{acos^2x+bsin^2x+c}+\sqrt{asin^2x+bcos^2x+c} $Với $a > 0,b > 0,c > 0$. Tìm $\min y, \max y$ Lời giải • Tính $\max y$ Theo bất đẳng thức Bunhiacopxki … [Đọc thêm...] vềĐề bài: Cho $y=\sqrt{acos^2x+bsin^2x+c}+\sqrt{asin^2x+bcos^2x+c} $Với $a > 0,b > 0,c > 0$. Tìm $\min y, \max y$
Đề bài: Cho ba số thực dương $a,b,c$ chứng minh rằng: $\frac{c^2}{a+b}+\frac{a^2}{b+c}+\frac{b^2}{c+a}\geq \frac{a+b+c}{2}$
Đề bài: Cho ba số thực dương $a,b,c$ chứng minh rằng: $\frac{c^2}{a+b}+\frac{a^2}{b+c}+\frac{b^2}{c+a}\geq \frac{a+b+c}{2}$ Lời giải Đề bài: Cho ba số thực dương $a,b,c$ chứng minh rằng: $\frac{c^2}{a+b}+\frac{a^2}{b+c}+\frac{b^2}{c+a}\geq \frac{a+b+c}{2}$ Lời giải Ta có ngay: … [Đọc thêm...] vềĐề bài: Cho ba số thực dương $a,b,c$ chứng minh rằng: $\frac{c^2}{a+b}+\frac{a^2}{b+c}+\frac{b^2}{c+a}\geq \frac{a+b+c}{2}$
Đề bài: Cho $a,b,c>0$ và $a+b+c=1$ thì $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\geq 9$
Đề bài: Cho $a,b,c>0$ và $a+b+c=1$ thì $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\geq 9$ Lời giải Đề bài: Cho $a,b,c>0$ và $a+b+c=1$ thì $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\geq 9$ Lời giải Áp dụng bất đẳng thức Bunhiacopski:$9=\left ( \sqrt{a}.\frac{1}{\sqrt{a}} … [Đọc thêm...] vềĐề bài: Cho $a,b,c>0$ và $a+b+c=1$ thì $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\geq 9$
Đề bài: Cho $x,y,z>0$. Chứng minh : $\frac{x}{y+2z}+\frac{y}{z+2x}+\frac{z}{x+2y}\geq 1$.
Đề bài: Cho $x,y,z>0$. Chứng minh : $\frac{x}{y+2z}+\frac{y}{z+2x}+\frac{z}{x+2y}\geq 1$. Lời giải Đề bài: Cho $x,y,z>0$. Chứng minh : $\frac{x}{y+2z}+\frac{y}{z+2x}+\frac{z}{x+2y}\geq 1$. Lời giải ========= Chuyên mục: Bất đẳng thức Bunhiacốpxki … [Đọc thêm...] vềĐề bài: Cho $x,y,z>0$. Chứng minh : $\frac{x}{y+2z}+\frac{y}{z+2x}+\frac{z}{x+2y}\geq 1$.
Đề bài: Với $a,b,c,x,y,z$ là những số thực bất kì, chứng minh rằng :$|ax+by+cz|\leq \sqrt{a^2+b^2+c^2}.\sqrt{x^2+y^2+z^2} $
Đề bài: Với $a,b,c,x,y,z$ là những số thực bất kì, chứng minh rằng :$|ax+by+cz|\leq \sqrt{a^2+b^2+c^2}.\sqrt{x^2+y^2+z^2} $ Lời giải Đề bài: Với $a,b,c,x,y,z$ là những số thực bất kì, chứng minh rằng :$|ax+by+cz|\leq \sqrt{a^2+b^2+c^2}.\sqrt{x^2+y^2+z^2} $ Lời giải Trong … [Đọc thêm...] vềĐề bài: Với $a,b,c,x,y,z$ là những số thực bất kì, chứng minh rằng :$|ax+by+cz|\leq \sqrt{a^2+b^2+c^2}.\sqrt{x^2+y^2+z^2} $
Đề bài: Cho các số thực $a,b$ thỏa mãn $a,b\geq 1$. Chứng minh rằng: $\sqrt{\ln a}+\sqrt{\ln b}\leq 2\sqrt{\ln\frac{a+b}{2}}$
Đề bài: Cho các số thực $a,b$ thỏa mãn $a,b\geq 1$. Chứng minh rằng: $\sqrt{\ln a}+\sqrt{\ln b}\leq 2\sqrt{\ln\frac{a+b}{2}}$ Lời giải Đề bài: Cho các số thực $a,b$ thỏa mãn $a,b\geq 1$. Chứng minh rằng: $\sqrt{\ln a}+\sqrt{\ln b}\leq 2\sqrt{\ln\frac{a+b}{2}}$ Lời giải Ta có : $VT= … [Đọc thêm...] vềĐề bài: Cho các số thực $a,b$ thỏa mãn $a,b\geq 1$. Chứng minh rằng: $\sqrt{\ln a}+\sqrt{\ln b}\leq 2\sqrt{\ln\frac{a+b}{2}}$
Đề bài: Cho $a^{2}+b^{2}=1$.Chứng minh: $a\sqrt{b+1}+b\sqrt{a+1}\leq \sqrt{2+\sqrt{2}}$
Đề bài: Cho $a^{2}+b^{2}=1$.Chứng minh: $a\sqrt{b+1}+b\sqrt{a+1}\leq \sqrt{2+\sqrt{2}}$ Lời giải Đề bài: Cho $a^{2}+b^{2}=1$.Chứng minh: $a\sqrt{b+1}+b\sqrt{a+1}\leq \sqrt{2+\sqrt{2}}$ Lời giải Áp dụng BĐT BCS 2 lần:$\left ( a\sqrt{b+1}+b\sqrt{a+1} \right )^{2}\leq \left ( a^{2}+b^{2} \right … [Đọc thêm...] vềĐề bài: Cho $a^{2}+b^{2}=1$.Chứng minh: $a\sqrt{b+1}+b\sqrt{a+1}\leq \sqrt{2+\sqrt{2}}$
Đề bài: Cho $a,b,c>0$ và $a^4+b^4+c^4=48$. Chứng minh $ab^2+bc^2+ca^2\leq 24$.
Đề bài: Cho $a,b,c>0$ và $a^4+b^4+c^4=48$. Chứng minh $ab^2+bc^2+ca^2\leq 24$. Lời giải Đề bài: Cho $a,b,c>0$ và $a^4+b^4+c^4=48$. Chứng minh $ab^2+bc^2+ca^2\leq 24$. Lời giải Cần lời giải chi tiết. ========= Chuyên mục: Bất đẳng thức Bunhiacốpxki … [Đọc thêm...] vềĐề bài: Cho $a,b,c>0$ và $a^4+b^4+c^4=48$. Chứng minh $ab^2+bc^2+ca^2\leq 24$.
Đề bài: Cho: $\begin{cases}x,y>0 \\ x^{2}+y^{3}\geq x^{3}+y^{4} \end{cases}$Chứng minh rằng : $x^{3}+y^{3}\leq x^{2}+y^{2}\leq x+y\leq 2$
Đề bài: Cho: $\begin{cases}x,y>0 \\ x^{2}+y^{3}\geq x^{3}+y^{4} \end{cases}$Chứng minh rằng : $x^{3}+y^{3}\leq x^{2}+y^{2}\leq x+y\leq 2$ Lời giải Đề bài: Cho: $\begin{cases}x,y>0 \\ x^{2}+y^{3}\geq x^{3}+y^{4} \end{cases}$Chứng minh rằng : $x^{3}+y^{3}\leq x^{2}+y^{2}\leq x+y\leq 2$ Lời giải … [Đọc thêm...] vềĐề bài: Cho: $\begin{cases}x,y>0 \\ x^{2}+y^{3}\geq x^{3}+y^{4} \end{cases}$Chứng minh rằng : $x^{3}+y^{3}\leq x^{2}+y^{2}\leq x+y\leq 2$