• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Toán 12
  • Toán 11
  • Toán 10
  • Trắc nghiệm
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán
Bạn đang ở:Trang chủ / Bất đẳng thức - Bài tập tự luận / Đề bài: Cho $y=\sqrt{acos^2x+bsin^2x+c}+\sqrt{asin^2x+bcos^2x+c}  $Với $a > 0,b > 0,c > 0$.  Tìm $\min y, \max y$

Đề bài: Cho $y=\sqrt{acos^2x+bsin^2x+c}+\sqrt{asin^2x+bcos^2x+c}  $Với $a > 0,b > 0,c > 0$.  Tìm $\min y, \max y$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức Bunhiacốpxki

Đề bài: Cho $y=\sqrt{acos^2x+bsin^2x+c}+\sqrt{asin^2x+bcos^2x+c}  $Với $a > 0,b > 0,c > 0$.  Tìm $\min y, \max y$

Bat dang thuc

Lời giải

Đề bài:
Cho $y=\sqrt{acos^2x+bsin^2x+c}+\sqrt{asin^2x+bcos^2x+c}  $Với $a > 0,b > 0,c > 0$.  Tìm $\min y, \max y$
Lời giải

•    Tính $\max y$
Theo bất đẳng thức Bunhiacopxki ta có:
$y  \le  \sqrt 2 \sqrt {a\cos {x^2} + b\sin {x^2} + c + a\sin {x^2} + b\cos {x^2} + c}  = \sqrt 2 \sqrt {a + b + 2c} $
Dấu = xảy ra khi
 $a\cos {x^2} + b\sin {x^2} + c = a\sin {x^2} + b\cos {x^2} + c$
Chẳng hạn như $\sin x = \cos x = \frac{{\sqrt 2 }}{2}$
Vậy $\max y = \sqrt 2 \sqrt {a + b + 2c} $

•    Tính $\min y$
Do $y > 0$ nên ta xét:
$z = {y^2} = a + b + 2c + 2\sqrt {\left( {a\cos {x^2} + b\sin {x^2} + c} \right)\left( {a\sin {x^2} + b\cos {x^2} + c} \right)} $
   $ = a + b + 2c + 2\sqrt {\left[ {a + c – \left( {a – b} \right)\sin {x^2}} \right].\left[ {b + c + \left( {a – b} \right)\sin {x^2}} \right]} $         $(1)$
Chỉ cần tìm $min$ của biểu thức trong căn, đặt ${\sin ^2}x = t \in \left[ {0;1} \right]$ ta được biểu thức đó là :
$u = \left[ {a + c – \left( {a – b} \right)t} \right].\left[ {b + c – \left( {a – b} \right)t} \right]$ với $t \in \left[ {0;1} \right]$
$u’ = … = – 2{\left( {a – b} \right)^2}t + {\left( {a – b} \right)^2}$            $(2)$
Trường hợp $a = b$ thì $u’ \equiv 0 \Rightarrow u = $ hằng $ \Rightarrow z = $ hằng.
$ \Rightarrow $ từ $(1)$ có $z = a + b + 2c + 2\sqrt {\left( {a + b} \right).\left( {b + c} \right)}  = {\left( {\sqrt {a + b}  + \sqrt {b + c} } \right)^2}$
$ \Rightarrow y = \sqrt {a + b}  + \sqrt {b + c} $ nên $\min y = \sqrt {a + b}  + \sqrt {b + c}  = 2\sqrt {\left( {a + b} \right)} $
Trường hợp $a \ne b$: từ $(2)$ $u’$ có nghiệm là $t = \frac{1}{2}$ và đổi dấu qua $t = \frac{1}{2}$ từ + sang – nên:
$min u = min \left\{ {u\left( 0 \right);u\left( 1 \right)} \right\} = \min \left\{ {\left( {a + c} \right)\left( {b + c} \right);\left( {a + c} \right)\left( {b + c} \right)} \right\} = \left( {a + c} \right)\left( {b + c} \right)$
Suy ra
$\min z = a + b + 2c + 2\sqrt {\left( {a + c} \right)\left( {b + c} \right)}  = {\left( {\sqrt {a + c}  + \sqrt {b + c} } \right)^2}$
$ \Rightarrow min z = \sqrt {a + c}  + \sqrt {b + c} $ vẫn như trường hợp $a = b$

=========
Chuyên mục: Bất đẳng thức Bunhiacốpxki

Bài liên quan:

  1. Đề bài:  Cho phương trình $\sqrt{x+1}+\sqrt{4-x}+\sqrt{(x+1)(4-x)}=m                              (1)$Tìm $m$ để phương trình có nghiệm duy nhất.
  2. Đề bài: Cho $a,b,c,p,q$ là năm số dương tùy ý. Chứng minh:         $\frac{a}{pb+qc}+\frac{b}{pc+qa}+\frac{c}{pa+qb}\geq \frac{3}{p+q}             (1)$
  3. Đề bài: Cho các số $a_1,a_2,b_1,b_2$. Chứng minh rằng:    $\sqrt {{{\left( {{a_1} + {a_2}} \right)}^2} + {{\left( {{b_1} + {b_2}} \right)}^2}}  \le \sqrt {{a_1}^2 + {b_1}^2}  + \sqrt {{a_2}^2 + {b_2}^2} $
  4. Đề bài: Cho  $\begin{cases}x,y,z \in [0;1] \\ x+y+z=\frac{3}{2} \end{cases}$Tìm giá trị lớn nhất  và giá trị nhỏ nhất của  $f(x,y,z)=\cos^2 (x^2+y^2+z^2)$
  5. Đề bài: Cho ba số nguyên dương $a,b,c$ chứng minh rằng:    $\frac{a^3}{b^2-bc+c^2}+\frac{b^3}{a^2-ac+c^2}+\frac{c^3}{a^2-ab+b^2}\geq \frac{3(ab+bc+ca)}{a+b+c}          (1)$
  6. Đề bài: Cho $ab+bc+ca=4.$Chứng minh rằng: $a^{4}+b^{4}+c^{4}\geq \frac{16}{3}$
  7. Đề bài: Cho \(a,b,c\geq -\frac{3}{4}\) và \(a+b+c=3\). Chứng minh rằng: \(\sqrt{4a+3}+\sqrt{4b+3}+\sqrt{4c+3}\leq 3\sqrt{7}\).
  8. Đề bài: Cho  $\begin{cases}s,t,u,v \in (0;\frac{\pi}{2}) \\ s+t+u+v=\pi \end{cases}$Chứng minh rằng:  $\frac{\sqrt{2}\sin s-1}{\cos s}+\frac{\sqrt{2}\sin t-1}{\cos t}+\frac{\sqrt{2}\sin u-1}{\cos u}+\frac{\sqrt{2}\sin v-1}{\cos v}\geq 0$
  9. Đề bài: Cho ba số thực dương $a,b,c$ chứng minh rằng:    $\frac{c^2}{a+b}+\frac{a^2}{b+c}+\frac{b^2}{c+a}\geq \frac{a+b+c}{2}$
  10. Đề bài: Cho $a,b,c>0$ và $a+b+c=1$ thì $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\geq 9$
  11. Đề bài: Cho \(6x+y=5\). Chứng minh rằng: \(9x^{2}+y^{2}\geq 5\).
  12. Đề bài: Với $a,b,c,x,y,z$ là những số thực bất kì, chứng minh rằng :$|ax+by+cz|\leq  \sqrt{a^2+b^2+c^2}.\sqrt{x^2+y^2+z^2}  $
  13. Đề bài: Cho các số thực $a,b$ thỏa mãn $a,b\geq 1$. Chứng minh rằng:   $\sqrt{\ln a}+\sqrt{\ln b}\leq 2\sqrt{\ln\frac{a+b}{2}}$
  14. Đề bài: Cho $a^{2}+b^{2}=1$.Chứng minh: $a\sqrt{b+1}+b\sqrt{a+1}\leq \sqrt{2+\sqrt{2}}$
  15. Đề bài: Cho $x,y,z>0$. Chứng minh : $\frac{x}{y+2z}+\frac{y}{z+2x}+\frac{z}{x+2y}\geq 1$.

Reader Interactions

Để lại một bình luận Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.