Đề bài: Phân tích số $16$ thành tổng của $2$ số dương sao cho tổng bình phương của chúng là nhỏ nhất. Lời giải Đề bài: Phân tích số $16$ thành tổng của $2$ số dương sao cho tổng bình phương của chúng là nhỏ nhất. Lời giải Xét $a,b>0$ sao cho $a+b=16$. Ta có $(a+b)^2\leq 2(a^2+b^2)$$\Rightarrow … [Đọc thêm...] vềĐề bài: Phân tích số $16$ thành tổng của $2$ số dương sao cho tổng bình phương của chúng là nhỏ nhất.
Bất đẳng thức - Bài tập tự luận
Đề bài: Chứng minh rằng với mọi số thực $a,b$ thỏa mãn $a\geq \frac{1}{2}, a>b$. Ta có: $\frac{2a^3+1}{4b(a-b)}\geq 3$
Đề bài: Chứng minh rằng với mọi số thực $a,b$ thỏa mãn $a\geq \frac{1}{2}, a>b$. Ta có: $\frac{2a^3+1}{4b(a-b)}\geq 3$ Lời giải Đề bài: Chứng minh rằng với mọi số thực $a,b$ thỏa mãn $a\geq \frac{1}{2}, a>b$. Ta có: $\frac{2a^3+1}{4b(a-b)}\geq 3$ Lời giải Nhận xét rằng … [Đọc thêm...] vềĐề bài: Chứng minh rằng với mọi số thực $a,b$ thỏa mãn $a\geq \frac{1}{2}, a>b$. Ta có: $\frac{2a^3+1}{4b(a-b)}\geq 3$
Đề bài: Cho $a,b,c,k$ là các số nguyên dương, $k\geq \frac{2}{3}$. Chứng minh rằng: $(\frac{a}{b+c})^k+(\frac{b}{c+a})^k+(\frac{c}{a+b})^k\geq \frac{3}{2^k} (1)$
Đề bài: Cho $a,b,c,k$ là các số nguyên dương, $k\geq \frac{2}{3}$. Chứng minh rằng: $(\frac{a}{b+c})^k+(\frac{b}{c+a})^k+(\frac{c}{a+b})^k\geq \frac{3}{2^k} (1)$ Lời giải Đề bài: Cho $a,b,c,k$ là các số nguyên dương, $k\geq \frac{2}{3}$. Chứng minh rằng: $(\frac{a}{b+c})^k+(\frac{b}{c+a})^k+(\frac{c}{a+b})^k\geq \frac{3}{2^k} (1)$ Lời … [Đọc thêm...] vềĐề bài: Cho $a,b,c,k$ là các số nguyên dương, $k\geq \frac{2}{3}$. Chứng minh rằng: $(\frac{a}{b+c})^k+(\frac{b}{c+a})^k+(\frac{c}{a+b})^k\geq \frac{3}{2^k} (1)$
Đề bài: Cho $n\in Z,n\geq 2.$Chứng minh rằng:$\sqrt[n]{1+\frac{\sqrt[n]{n}}{n}}+\sqrt[n]{1-\frac{\sqrt[n]{n}}{n}}
Đề bài: Cho $n\in Z,n\geq 2.$Chứng minh rằng:$\sqrt[n]{1+\frac{\sqrt[n]{n}}{n}}+\sqrt[n]{1-\frac{\sqrt[n]{n}}{n}} Lời giải Đề bài: Cho $n\in Z,n\geq 2.$Chứng minh rằng:$\sqrt[n]{1+\frac{\sqrt[n]{n}}{n}}+\sqrt[n]{1-\frac{\sqrt[n]{n}}{n}} Lời giải Vì $n\in Z,n\geq 2.\Rightarrow 0Theo BĐT … [Đọc thêm...] vềĐề bài: Cho $n\in Z,n\geq 2.$Chứng minh rằng:$\sqrt[n]{1+\frac{\sqrt[n]{n}}{n}}+\sqrt[n]{1-\frac{\sqrt[n]{n}}{n}}
Đề bài: Cho \(a,b,c\geq -\frac{3}{4}\) và \(a+b+c=3\). Chứng minh rằng: \(\sqrt{4a+3}+\sqrt{4b+3}+\sqrt{4c+3}\leq 3\sqrt{7}\).
Đề bài: Cho \(a,b,c\geq -\frac{3}{4}\) và \(a+b+c=3\). Chứng minh rằng: \(\sqrt{4a+3}+\sqrt{4b+3}+\sqrt{4c+3}\leq 3\sqrt{7}\). Lời giải Đề bài: Cho \(a,b,c\geq -\frac{3}{4}\) và \(a+b+c=3\). Chứng minh rằng: \(\sqrt{4a+3}+\sqrt{4b+3}+\sqrt{4c+3}\leq 3\sqrt{7}\). Lời giải Áp dụng bất đẳng thức … [Đọc thêm...] vềĐề bài: Cho \(a,b,c\geq -\frac{3}{4}\) và \(a+b+c=3\). Chứng minh rằng: \(\sqrt{4a+3}+\sqrt{4b+3}+\sqrt{4c+3}\leq 3\sqrt{7}\).
Đề bài: Cho $\begin{cases}s,t,u,v \in (0;\frac{\pi}{2}) \\ s+t+u+v=\pi \end{cases}$Chứng minh rằng: $\frac{\sqrt{2}\sin s-1}{\cos s}+\frac{\sqrt{2}\sin t-1}{\cos t}+\frac{\sqrt{2}\sin u-1}{\cos u}+\frac{\sqrt{2}\sin v-1}{\cos v}\geq 0$
Đề bài: Cho $\begin{cases}s,t,u,v \in (0;\frac{\pi}{2}) \\ s+t+u+v=\pi \end{cases}$Chứng minh rằng: $\frac{\sqrt{2}\sin s-1}{\cos s}+\frac{\sqrt{2}\sin t-1}{\cos t}+\frac{\sqrt{2}\sin u-1}{\cos u}+\frac{\sqrt{2}\sin v-1}{\cos v}\geq 0$ Lời giải Đề bài: Cho $\begin{cases}s,t,u,v \in (0;\frac{\pi}{2}) \\ s+t+u+v=\pi \end{cases}$Chứng minh rằng: … [Đọc thêm...] vềĐề bài: Cho $\begin{cases}s,t,u,v \in (0;\frac{\pi}{2}) \\ s+t+u+v=\pi \end{cases}$Chứng minh rằng: $\frac{\sqrt{2}\sin s-1}{\cos s}+\frac{\sqrt{2}\sin t-1}{\cos t}+\frac{\sqrt{2}\sin u-1}{\cos u}+\frac{\sqrt{2}\sin v-1}{\cos v}\geq 0$
Đề bài: Cho ba số nguyên dương $a,b,c$ chứng minh rằng: $\frac{a^3}{b^2-bc+c^2}+\frac{b^3}{a^2-ac+c^2}+\frac{c^3}{a^2-ab+b^2}\geq \frac{3(ab+bc+ca)}{a+b+c} (1)$
Đề bài: Cho ba số nguyên dương $a,b,c$ chứng minh rằng: $\frac{a^3}{b^2-bc+c^2}+\frac{b^3}{a^2-ac+c^2}+\frac{c^3}{a^2-ab+b^2}\geq \frac{3(ab+bc+ca)}{a+b+c} (1)$ Lời giải Đề bài: Cho ba số nguyên dương $a,b,c$ chứng minh rằng: $\frac{a^3}{b^2-bc+c^2}+\frac{b^3}{a^2-ac+c^2}+\frac{c^3}{a^2-ab+b^2}\geq \frac{3(ab+bc+ca)}{a+b+c} (1)$ Lời … [Đọc thêm...] vềĐề bài: Cho ba số nguyên dương $a,b,c$ chứng minh rằng: $\frac{a^3}{b^2-bc+c^2}+\frac{b^3}{a^2-ac+c^2}+\frac{c^3}{a^2-ab+b^2}\geq \frac{3(ab+bc+ca)}{a+b+c} (1)$
Đề bài: Cho $ab+bc+ca=4.$Chứng minh rằng: $a^{4}+b^{4}+c^{4}\geq \frac{16}{3}$
Đề bài: Cho $ab+bc+ca=4.$Chứng minh rằng: $a^{4}+b^{4}+c^{4}\geq \frac{16}{3}$ Lời giải Đề bài: Cho $ab+bc+ca=4.$Chứng minh rằng: $a^{4}+b^{4}+c^{4}\geq \frac{16}{3}$ Lời giải Áp dụng bất đẳng thức Bunhiacopski $2$ lần:$16=\left ( ab+bc+ca \right )^{2}\leq \left ( a^{2}+b^{2}+c^{2} \right … [Đọc thêm...] vềĐề bài: Cho $ab+bc+ca=4.$Chứng minh rằng: $a^{4}+b^{4}+c^{4}\geq \frac{16}{3}$
Đề bài: Chứng minh rằng: với mọi $\triangle ABC$:$(\tan \frac{A}{2})^{2\sqrt{2}}+(\tan \frac{B}{2})^{2\sqrt{2}}+(\tan \frac{C}{2})^{2\sqrt{2}} \geq 3^{1-\sqrt{2}}$
Đề bài: Chứng minh rằng: với mọi $\triangle ABC$:$(\tan \frac{A}{2})^{2\sqrt{2}}+(\tan \frac{B}{2})^{2\sqrt{2}}+(\tan \frac{C}{2})^{2\sqrt{2}} \geq 3^{1-\sqrt{2}}$ Lời giải Đề bài: Chứng minh rằng: với mọi $\triangle ABC$:$(\tan \frac{A}{2})^{2\sqrt{2}}+(\tan \frac{B}{2})^{2\sqrt{2}}+(\tan \frac{C}{2})^{2\sqrt{2}} \geq 3^{1-\sqrt{2}}$ Lời giải … [Đọc thêm...] vềĐề bài: Chứng minh rằng: với mọi $\triangle ABC$:$(\tan \frac{A}{2})^{2\sqrt{2}}+(\tan \frac{B}{2})^{2\sqrt{2}}+(\tan \frac{C}{2})^{2\sqrt{2}} \geq 3^{1-\sqrt{2}}$
Đề bài: Cho $\triangle ABC$ có $3$ góc nhọn.Chứng minh rằng:$\tan A+\tan B+\tan C \geq 3 \sqrt {3}$
Đề bài: Cho $\triangle ABC$ có $3$ góc nhọn.Chứng minh rằng:$\tan A+\tan B+\tan C \geq 3 \sqrt {3}$ Lời giải Đề bài: Cho $\triangle ABC$ có $3$ góc nhọn.Chứng minh rằng:$\tan A+\tan B+\tan C \geq 3 \sqrt {3}$ Lời giải Xét $f(x)=\tan x,x \in … [Đọc thêm...] vềĐề bài: Cho $\triangle ABC$ có $3$ góc nhọn.Chứng minh rằng:$\tan A+\tan B+\tan C \geq 3 \sqrt {3}$