Đề bài: Giả sử $a\cos2x + b\cos x + 1 \ge 0$ đúng với $\forall x$. Chứng minh $|a|+|b| \le 2$ Lời giải Đề bài: Giả sử $a\cos2x + b\cos x + 1 \ge 0$ đúng với $\forall x$. Chứng minh $|a|+|b| \le 2$ Lời giải ========= Chuyên mục: Các dạng bất đẳng thức khác … [Đọc thêm...] vềĐề bài: Giả sử $a\cos2x + b\cos x + 1 \ge 0$ đúng với $\forall x$. Chứng minh $|a|+|b| \le 2$
Bất đẳng thức - Bài tập tự luận
Đề bài: Cho $x,y$ là các số thực,chứng minh rằng :$A=\sqrt{x^{2}+4y^{2}+6x+9}+\sqrt{x^{2}+4y^{2}-2x+10}\geq 5$
Đề bài: Cho $x,y$ là các số thực,chứng minh rằng :$A=\sqrt{x^{2}+4y^{2}+6x+9}+\sqrt{x^{2}+4y^{2}-2x+10}\geq 5$ Lời giải Đề bài: Cho $x,y$ là các số thực,chứng minh rằng :$A=\sqrt{x^{2}+4y^{2}+6x+9}+\sqrt{x^{2}+4y^{2}-2x+10}\geq 5$ Lời giải Ta có: … [Đọc thêm...] vềĐề bài: Cho $x,y$ là các số thực,chứng minh rằng :$A=\sqrt{x^{2}+4y^{2}+6x+9}+\sqrt{x^{2}+4y^{2}-2x+10}\geq 5$
Đề bài: ho tứ diện $SABC$ có các góc phẳng ở đỉnh $S$ vuông. Chứng minh rằng : $\sqrt{3}S_{ABC} \geq S_{SBC}+S_{SAB}+S_{SAC}$
Đề bài: ho tứ diện $SABC$ có các góc phẳng ở đỉnh $S$ vuông. Chứng minh rằng : $\sqrt{3}S_{ABC} \geq S_{SBC}+S_{SAB}+S_{SAC}$ Lời giải Đề bài: ho tứ diện $SABC$ có các góc phẳng ở đỉnh $S$ vuông. Chứng minh rằng : $\sqrt{3}S_{ABC} \geq S_{SBC}+S_{SAB}+S_{SAC}$ Lời giải Áp dụng bất đẳng thức … [Đọc thêm...] vềĐề bài: ho tứ diện $SABC$ có các góc phẳng ở đỉnh $S$ vuông. Chứng minh rằng : $\sqrt{3}S_{ABC} \geq S_{SBC}+S_{SAB}+S_{SAC}$
Đề bài: Chứng minh với mọi số nguyên dương n:a) \(\displaystyle \frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+…+\frac{1}{\sqrt{n}}\leq 2\sqrt{n}-1\)b) \(\displaystyle \frac{1}{2}\times \frac{3}{4}\times \ldots \times\frac{2n-1}{2n}\leq \frac{1}{\sqrt{2n}}\)
Đề bài: Chứng minh với mọi số nguyên dương n:a) \(\displaystyle \frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{n}}\leq 2\sqrt{n}-1\)b) \(\displaystyle \frac{1}{2}\times \frac{3}{4}\times \ldots \times\frac{2n-1}{2n}\leq \frac{1}{\sqrt{2n}}\) Lời giải Đề bài: Chứng minh với mọi số nguyên dương n:a) … [Đọc thêm...] vềĐề bài: Chứng minh với mọi số nguyên dương n:a) \(\displaystyle \frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+…+\frac{1}{\sqrt{n}}\leq 2\sqrt{n}-1\)b) \(\displaystyle \frac{1}{2}\times \frac{3}{4}\times \ldots \times\frac{2n-1}{2n}\leq \frac{1}{\sqrt{2n}}\)
Đề bài: Với $a,b,c>0$ và $a^2+b^2+c^2=1$, chứng minh rằng: $\frac{c}{a^2+b^2}+\frac{a}{b^2+c^2}+\frac{b}{c^2+a^2}\geq \frac{3\sqrt{3}}{2}$.
Đề bài: Với $a,b,c>0$ và $a^2+b^2+c^2=1$, chứng minh rằng: $\frac{c}{a^2+b^2}+\frac{a}{b^2+c^2}+\frac{b}{c^2+a^2}\geq \frac{3\sqrt{3}}{2}$. Lời giải Đề bài: Với $a,b,c>0$ và $a^2+b^2+c^2=1$, chứng minh rằng: $\frac{c}{a^2+b^2}+\frac{a}{b^2+c^2}+\frac{b}{c^2+a^2}\geq \frac{3\sqrt{3}}{2}$. Lời giải … [Đọc thêm...] vềĐề bài: Với $a,b,c>0$ và $a^2+b^2+c^2=1$, chứng minh rằng: $\frac{c}{a^2+b^2}+\frac{a}{b^2+c^2}+\frac{b}{c^2+a^2}\geq \frac{3\sqrt{3}}{2}$.
Đề bài: Cho $ x,y,z\geq 0$ chứng minh $\sqrt{x^{2}+xy+y^{2}}+\sqrt{y^{2}+yz+z^{2}}+\sqrt{z^{2}+zx+x^{2}}\geq \left ( x+y+z \right )\sqrt{3} $
Đề bài: Cho $ x,y,z\geq 0$ chứng minh $\sqrt{x^{2}+xy+y^{2}}+\sqrt{y^{2}+yz+z^{2}}+\sqrt{z^{2}+zx+x^{2}}\geq \left ( x+y+z \right )\sqrt{3} $ Lời giải Đề bài: Cho $ x,y,z\geq 0$ chứng minh $\sqrt{x^{2}+xy+y^{2}}+\sqrt{y^{2}+yz+z^{2}}+\sqrt{z^{2}+zx+x^{2}}\geq \left ( x+y+z \right )\sqrt{3} $ Lời giải … [Đọc thêm...] vềĐề bài: Cho $ x,y,z\geq 0$ chứng minh $\sqrt{x^{2}+xy+y^{2}}+\sqrt{y^{2}+yz+z^{2}}+\sqrt{z^{2}+zx+x^{2}}\geq \left ( x+y+z \right )\sqrt{3} $
Đề bài: Chứng minh rằng với mọi số nguyên dương $n$ ta có: $(1+\frac{1}{n})^n
Đề bài: Chứng minh rằng với mọi số nguyên dương $n$ ta có: $(1+\frac{1}{n})^n Lời giải Đề bài: Chứng minh rằng với mọi số nguyên dương $n$ ta có: $(1+\frac{1}{n})^n Lời giải Bất đẳng thức $(1)$ đúng với $n=1, n=2$ bởi vì:$(1+\frac{1}{1})^1=2Vậy ta xét $n\geq … [Đọc thêm...] vềĐề bài: Chứng minh rằng với mọi số nguyên dương $n$ ta có: $(1+\frac{1}{n})^n
Đề bài: Gọi $a,b,c$ là độ dài các cạnh $\Delta ABC$. Tìm giá trị nhỏ nhất của biểu thức $Q=\frac{aA+bB+cC}{a+b+c}$
Đề bài: Gọi $a,b,c$ là độ dài các cạnh $\Delta ABC$. Tìm giá trị nhỏ nhất của biểu thức $Q=\frac{aA+bB+cC}{a+b+c}$ Lời giải Đề bài: Gọi $a,b,c$ là độ dài các cạnh $\Delta ABC$. Tìm giá trị nhỏ nhất của biểu thức $Q=\frac{aA+bB+cC}{a+b+c}$ Lời giải … [Đọc thêm...] vềĐề bài: Gọi $a,b,c$ là độ dài các cạnh $\Delta ABC$. Tìm giá trị nhỏ nhất của biểu thức $Q=\frac{aA+bB+cC}{a+b+c}$
Đề bài: Chứng minh rằng trong mọi tam giác $ABC$ nhọn ta đều có: $\frac{2}{3}(\sin A+\sin B+\sin C)+\frac{1}{3}(\tan A+\tan B+\tan C)> \pi$.
Đề bài: Chứng minh rằng trong mọi tam giác $ABC$ nhọn ta đều có: $\frac{2}{3}(\sin A+\sin B+\sin C)+\frac{1}{3}(\tan A+\tan B+\tan C)> \pi$. Lời giải Đề bài: Chứng minh rằng trong mọi tam giác $ABC$ nhọn ta đều có: $\frac{2}{3}(\sin A+\sin B+\sin C)+\frac{1}{3}(\tan A+\tan B+\tan C)> \pi$. Lời giải … [Đọc thêm...] vềĐề bài: Chứng minh rằng trong mọi tam giác $ABC$ nhọn ta đều có: $\frac{2}{3}(\sin A+\sin B+\sin C)+\frac{1}{3}(\tan A+\tan B+\tan C)> \pi$.
Đề bài: Chứng minh bất dẳng thức:a) $\sin ^{4}x+\cos ^{8}x\leq 1 b) \sin^{10}x+\cos^{11}x \leq \ 1$ c)$(1+x)^{n}+(1-x)^{n} \leq 2^{n}; (|x|\leq 1), n \geq 1$
Đề bài: Chứng minh bất dẳng thức:a) $\sin ^{4}x+\cos ^{8}x\leq 1 b) \sin^{10}x+\cos^{11}x \leq \ 1$ c)$(1+x)^{n}+(1-x)^{n} \leq 2^{n}; (|x|\leq 1), n \geq 1$ Lời giải Đề bài: Chứng minh bất dẳng thức:a) $\sin ^{4}x+\cos ^{8}x\leq 1 b) … [Đọc thêm...] vềĐề bài: Chứng minh bất dẳng thức:a) $\sin ^{4}x+\cos ^{8}x\leq 1 b) \sin^{10}x+\cos^{11}x \leq \ 1$ c)$(1+x)^{n}+(1-x)^{n} \leq 2^{n}; (|x|\leq 1), n \geq 1$