• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Toán 12
  • Toán 11
  • Toán 10
  • Trắc nghiệm
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán

Bất đẳng thức - Bài tập tự luận

Đề bài: Giả sử $a\cos2x + b\cos x + 1 \ge 0$ đúng với $\forall x$. Chứng minh $|a|+|b| \le 2$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Các dạng bất đẳng thức khác

Đề bài: Giả sử $a\cos2x + b\cos x + 1 \ge 0$ đúng với $\forall x$. Chứng minh $|a|+|b| \le 2$ Lời giải Đề bài: Giả sử $a\cos2x + b\cos x + 1 \ge 0$ đúng với $\forall x$. Chứng minh $|a|+|b| \le 2$ Lời giải ========= Chuyên mục: Các dạng bất đẳng thức khác … [Đọc thêm...] vềĐề bài: Giả sử $a\cos2x + b\cos x + 1 \ge 0$ đúng với $\forall x$. Chứng minh $|a|+|b| \le 2$

Đề bài: Cho $x,y$ là các số thực,chứng minh rằng :$A=\sqrt{x^{2}+4y^{2}+6x+9}+\sqrt{x^{2}+4y^{2}-2x+10}\geq 5$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Các dạng bất đẳng thức khác

Đề bài: Cho $x,y$ là các số thực,chứng minh rằng :$A=\sqrt{x^{2}+4y^{2}+6x+9}+\sqrt{x^{2}+4y^{2}-2x+10}\geq 5$ Lời giải Đề bài: Cho $x,y$ là các số thực,chứng minh rằng :$A=\sqrt{x^{2}+4y^{2}+6x+9}+\sqrt{x^{2}+4y^{2}-2x+10}\geq 5$ Lời giải Ta có: … [Đọc thêm...] vềĐề bài: Cho $x,y$ là các số thực,chứng minh rằng :$A=\sqrt{x^{2}+4y^{2}+6x+9}+\sqrt{x^{2}+4y^{2}-2x+10}\geq 5$

Đề bài: ho tứ diện $SABC$ có các góc phẳng ở đỉnh $S$  vuông. Chứng minh rằng  : $\sqrt{3}S_{ABC} \geq S_{SBC}+S_{SAB}+S_{SAC}$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Các dạng bất đẳng thức khác

Đề bài: ho tứ diện $SABC$ có các góc phẳng ở đỉnh $S$  vuông. Chứng minh rằng  : $\sqrt{3}S_{ABC} \geq S_{SBC}+S_{SAB}+S_{SAC}$ Lời giải Đề bài: ho tứ diện $SABC$ có các góc phẳng ở đỉnh $S$  vuông. Chứng minh rằng  : $\sqrt{3}S_{ABC} \geq S_{SBC}+S_{SAB}+S_{SAC}$ Lời giải Áp dụng bất đẳng thức … [Đọc thêm...] vềĐề bài: ho tứ diện $SABC$ có các góc phẳng ở đỉnh $S$  vuông. Chứng minh rằng  : $\sqrt{3}S_{ABC} \geq S_{SBC}+S_{SAB}+S_{SAC}$

Đề bài: Chứng minh với mọi số nguyên dương n:a) \(\displaystyle \frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+…+\frac{1}{\sqrt{n}}\leq 2\sqrt{n}-1\)b) \(\displaystyle \frac{1}{2}\times \frac{3}{4}\times \ldots \times\frac{2n-1}{2n}\leq \frac{1}{\sqrt{2n}}\)

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Các dạng bất đẳng thức khác

Đề bài: Chứng minh với mọi số nguyên dương n:a) \(\displaystyle \frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{n}}\leq 2\sqrt{n}-1\)b) \(\displaystyle \frac{1}{2}\times \frac{3}{4}\times \ldots \times\frac{2n-1}{2n}\leq \frac{1}{\sqrt{2n}}\) Lời giải Đề bài: Chứng minh với mọi số nguyên dương n:a) … [Đọc thêm...] vềĐề bài: Chứng minh với mọi số nguyên dương n:a) \(\displaystyle \frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+…+\frac{1}{\sqrt{n}}\leq 2\sqrt{n}-1\)b) \(\displaystyle \frac{1}{2}\times \frac{3}{4}\times \ldots \times\frac{2n-1}{2n}\leq \frac{1}{\sqrt{2n}}\)

Đề bài: Với $a,b,c>0$ và $a^2+b^2+c^2=1$, chứng minh rằng:   $\frac{c}{a^2+b^2}+\frac{a}{b^2+c^2}+\frac{b}{c^2+a^2}\geq \frac{3\sqrt{3}}{2}$.

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Các dạng bất đẳng thức khác

Đề bài: Với $a,b,c>0$ và $a^2+b^2+c^2=1$, chứng minh rằng:   $\frac{c}{a^2+b^2}+\frac{a}{b^2+c^2}+\frac{b}{c^2+a^2}\geq \frac{3\sqrt{3}}{2}$. Lời giải Đề bài: Với $a,b,c>0$ và $a^2+b^2+c^2=1$, chứng minh rằng:   $\frac{c}{a^2+b^2}+\frac{a}{b^2+c^2}+\frac{b}{c^2+a^2}\geq \frac{3\sqrt{3}}{2}$. Lời giải … [Đọc thêm...] vềĐề bài: Với $a,b,c>0$ và $a^2+b^2+c^2=1$, chứng minh rằng:   $\frac{c}{a^2+b^2}+\frac{a}{b^2+c^2}+\frac{b}{c^2+a^2}\geq \frac{3\sqrt{3}}{2}$.

Đề bài: Cho $ x,y,z\geq 0$ chứng minh $\sqrt{x^{2}+xy+y^{2}}+\sqrt{y^{2}+yz+z^{2}}+\sqrt{z^{2}+zx+x^{2}}\geq \left ( x+y+z \right )\sqrt{3} $

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Các dạng bất đẳng thức khác

Đề bài: Cho $ x,y,z\geq 0$ chứng minh $\sqrt{x^{2}+xy+y^{2}}+\sqrt{y^{2}+yz+z^{2}}+\sqrt{z^{2}+zx+x^{2}}\geq \left ( x+y+z \right )\sqrt{3} $ Lời giải Đề bài: Cho $ x,y,z\geq 0$ chứng minh $\sqrt{x^{2}+xy+y^{2}}+\sqrt{y^{2}+yz+z^{2}}+\sqrt{z^{2}+zx+x^{2}}\geq \left ( x+y+z \right )\sqrt{3} $ Lời giải … [Đọc thêm...] vềĐề bài: Cho $ x,y,z\geq 0$ chứng minh $\sqrt{x^{2}+xy+y^{2}}+\sqrt{y^{2}+yz+z^{2}}+\sqrt{z^{2}+zx+x^{2}}\geq \left ( x+y+z \right )\sqrt{3} $

Đề bài: Chứng minh rằng với mọi số nguyên dương $n$ ta có:                   $(1+\frac{1}{n})^n

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Các dạng bất đẳng thức khác

Đề bài: Chứng minh rằng với mọi số nguyên dương $n$ ta có:                   $(1+\frac{1}{n})^n Lời giải Đề bài: Chứng minh rằng với mọi số nguyên dương $n$ ta có:                   $(1+\frac{1}{n})^n Lời giải Bất đẳng thức $(1)$ đúng với $n=1, n=2$ bởi vì:$(1+\frac{1}{1})^1=2Vậy ta xét $n\geq … [Đọc thêm...] vềĐề bài: Chứng minh rằng với mọi số nguyên dương $n$ ta có:                   $(1+\frac{1}{n})^n

Đề bài: Gọi $a,b,c$ là độ dài các cạnh $\Delta ABC$. Tìm giá trị nhỏ nhất của biểu thức                                          $Q=\frac{aA+bB+cC}{a+b+c}$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức trong tam giác

Đề bài: Gọi $a,b,c$ là độ dài các cạnh $\Delta ABC$. Tìm giá trị nhỏ nhất của biểu thức                                          $Q=\frac{aA+bB+cC}{a+b+c}$ Lời giải Đề bài: Gọi $a,b,c$ là độ dài các cạnh $\Delta ABC$. Tìm giá trị nhỏ nhất của biểu thức                                          $Q=\frac{aA+bB+cC}{a+b+c}$ Lời giải … [Đọc thêm...] vềĐề bài: Gọi $a,b,c$ là độ dài các cạnh $\Delta ABC$. Tìm giá trị nhỏ nhất của biểu thức                                          $Q=\frac{aA+bB+cC}{a+b+c}$

Đề bài: Chứng minh rằng trong mọi tam giác $ABC$ nhọn ta đều có:             $\frac{2}{3}(\sin A+\sin B+\sin C)+\frac{1}{3}(\tan A+\tan B+\tan C)> \pi$.

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức trong tam giác

Đề bài: Chứng minh rằng trong mọi tam giác $ABC$ nhọn ta đều có:             $\frac{2}{3}(\sin A+\sin B+\sin C)+\frac{1}{3}(\tan A+\tan B+\tan C)> \pi$. Lời giải Đề bài: Chứng minh rằng trong mọi tam giác $ABC$ nhọn ta đều có:             $\frac{2}{3}(\sin A+\sin B+\sin C)+\frac{1}{3}(\tan A+\tan B+\tan C)> \pi$. Lời giải … [Đọc thêm...] vềĐề bài: Chứng minh rằng trong mọi tam giác $ABC$ nhọn ta đều có:             $\frac{2}{3}(\sin A+\sin B+\sin C)+\frac{1}{3}(\tan A+\tan B+\tan C)> \pi$.

Đề bài: Chứng minh bất dẳng thức:a) $\sin ^{4}x+\cos ^{8}x\leq  1                                               b) \sin^{10}x+\cos^{11}x \leq \ 1$ c)$(1+x)^{n}+(1-x)^{n} \leq  2^{n}; (|x|\leq  1), n \geq   1$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức lượng giác

Đề bài: Chứng minh bất dẳng thức:a) $\sin ^{4}x+\cos ^{8}x\leq  1                                               b) \sin^{10}x+\cos^{11}x \leq \ 1$ c)$(1+x)^{n}+(1-x)^{n} \leq  2^{n}; (|x|\leq  1), n \geq   1$ Lời giải Đề bài: Chứng minh bất dẳng thức:a) $\sin ^{4}x+\cos ^{8}x\leq  1                                               b) … [Đọc thêm...] vềĐề bài: Chứng minh bất dẳng thức:a) $\sin ^{4}x+\cos ^{8}x\leq  1                                               b) \sin^{10}x+\cos^{11}x \leq \ 1$ c)$(1+x)^{n}+(1-x)^{n} \leq  2^{n}; (|x|\leq  1), n \geq   1$

  • « Chuyển đến Trang trước
  • Trang 1
  • Interim pages omitted …
  • Trang 40
  • Trang 41
  • Trang 42
  • Trang 43
  • Chuyển đến Trang sau »

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.