• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Toán 12
  • Toán 11
  • Toán 10
  • Trắc nghiệm
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán

Bất đẳng thức - Bài tập tự luận

Đề bài: Cho $a,b,c,p,q$ là năm số dương tùy ý. Chứng minh:         $\frac{a}{pb+qc}+\frac{b}{pc+qa}+\frac{c}{pa+qb}\geq \frac{3}{p+q}             (1)$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức Bunhiacốpxki

Đề bài: Cho $a,b,c,p,q$ là năm số dương tùy ý. Chứng minh:         $\frac{a}{pb+qc}+\frac{b}{pc+qa}+\frac{c}{pa+qb}\geq \frac{3}{p+q}             (1)$ Lời giải Đề bài: Cho $a,b,c,p,q$ là năm số dương tùy ý. Chứng minh:         $\frac{a}{pb+qc}+\frac{b}{pc+qa}+\frac{c}{pa+qb}\geq \frac{3}{p+q}             (1)$ Lời giải … [Đọc thêm...] vềĐề bài: Cho $a,b,c,p,q$ là năm số dương tùy ý. Chứng minh:         $\frac{a}{pb+qc}+\frac{b}{pc+qa}+\frac{c}{pa+qb}\geq \frac{3}{p+q}             (1)$

Đề bài: Cho các số $a_1,a_2,b_1,b_2$. Chứng minh rằng:    $\sqrt {{{\left( {{a_1} + {a_2}} \right)}^2} + {{\left( {{b_1} + {b_2}} \right)}^2}}  \le \sqrt {{a_1}^2 + {b_1}^2}  + \sqrt {{a_2}^2 + {b_2}^2} $

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức Bunhiacốpxki

Đề bài: Cho các số $a_1,a_2,b_1,b_2$. Chứng minh rằng:    $\sqrt {{{\left( {{a_1} + {a_2}} \right)}^2} + {{\left( {{b_1} + {b_2}} \right)}^2}}  \le \sqrt {{a_1}^2 + {b_1}^2}  + \sqrt {{a_2}^2 + {b_2}^2} $ Lời giải Đề bài: Cho các số $a_1,a_2,b_1,b_2$. Chứng minh rằng:    $\sqrt {{{\left( {{a_1} + {a_2}} \right)}^2} + {{\left( {{b_1} + {b_2}} \right)}^2}}  \le … [Đọc thêm...] vềĐề bài: Cho các số $a_1,a_2,b_1,b_2$. Chứng minh rằng:    $\sqrt {{{\left( {{a_1} + {a_2}} \right)}^2} + {{\left( {{b_1} + {b_2}} \right)}^2}}  \le \sqrt {{a_1}^2 + {b_1}^2}  + \sqrt {{a_2}^2 + {b_2}^2} $

Đề bài: Cho $\triangle  ABC$ có $3$ góc nhọn.Chứng minh rằng:$\tan A+\tan B+\tan C \geq 3 \sqrt {3}$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Ứng dụng hàm số để chứng minh Bất đẳng thức

Đề bài: Cho $\triangle  ABC$ có $3$ góc nhọn.Chứng minh rằng:$\tan A+\tan B+\tan C \geq 3 \sqrt {3}$ Lời giải Đề bài: Cho $\triangle  ABC$ có $3$ góc nhọn.Chứng minh rằng:$\tan A+\tan B+\tan C \geq 3 \sqrt {3}$ Lời giải Xét $f(x)=\tan x,x \in … [Đọc thêm...] vềĐề bài: Cho $\triangle  ABC$ có $3$ góc nhọn.Chứng minh rằng:$\tan A+\tan B+\tan C \geq 3 \sqrt {3}$

Đề bài: Giả sử $x, y$ là các số thay đổi thỏa mãn: $x > 0, y > 0, x + y = 1.$Hãy tìm giá trị nhỏ nhất của biểu thức: $P = \frac{x}{\sqrt {1 – x} } + \frac{y}{\sqrt {1 – y} }$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Ứng dụng hàm số để chứng minh Bất đẳng thức

Đề bài: Giả sử $x, y$ là các số thay đổi thỏa mãn: $x > 0, y > 0, x + y = 1.$Hãy tìm giá trị nhỏ nhất của biểu thức: $P = \frac{x}{\sqrt {1 - x} } + \frac{y}{\sqrt {1 - y} }$ Lời giải Đề bài: Giả sử $x, y$ là các số thay đổi thỏa mãn: $x > 0, y > 0, x + y = 1.$Hãy tìm giá trị nhỏ nhất của biểu thức: $P = \frac{x}{\sqrt {1 - x} } + \frac{y}{\sqrt {1 - y} }$ … [Đọc thêm...] vềĐề bài: Giả sử $x, y$ là các số thay đổi thỏa mãn: $x > 0, y > 0, x + y = 1.$Hãy tìm giá trị nhỏ nhất của biểu thức: $P = \frac{x}{\sqrt {1 – x} } + \frac{y}{\sqrt {1 – y} }$

Đề bài: Cho $k$ và $n$ là các số nguyên thỏa mãn \(0 \le k \le n\). Chứng minh rằng: \(C_{2n + k}^n.C_{2n – k}^n \le {\left( {C_{2n}^n} \right)^2}\)

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Các dạng bất đẳng thức khác

Đề bài: Cho $k$ và $n$ là các số nguyên thỏa mãn \(0 \le k \le n\). Chứng minh rằng: \(C_{2n + k}^n.C_{2n - k}^n \le {\left( {C_{2n}^n} \right)^2}\) Lời giải Đề bài: Cho $k$ và $n$ là các số nguyên thỏa mãn \(0 \le k \le n\). Chứng minh rằng: \(C_{2n + k}^n.C_{2n - k}^n \le {\left( {C_{2n}^n} \right)^2}\) Lời giải … [Đọc thêm...] vềĐề bài: Cho $k$ và $n$ là các số nguyên thỏa mãn \(0 \le k \le n\). Chứng minh rằng: \(C_{2n + k}^n.C_{2n – k}^n \le {\left( {C_{2n}^n} \right)^2}\)

Đề bài: Cho $x,y$ là các số thực,chứng minh rằng :$A=\sqrt{x^{2}+4y^{2}+6x+9}+\sqrt{x^{2}+4y^{2}-2x+10}\geq 5$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Các dạng bất đẳng thức khác

Đề bài: Cho $x,y$ là các số thực,chứng minh rằng :$A=\sqrt{x^{2}+4y^{2}+6x+9}+\sqrt{x^{2}+4y^{2}-2x+10}\geq 5$ Lời giải Đề bài: Cho $x,y$ là các số thực,chứng minh rằng :$A=\sqrt{x^{2}+4y^{2}+6x+9}+\sqrt{x^{2}+4y^{2}-2x+10}\geq 5$ Lời giải Ta có: … [Đọc thêm...] vềĐề bài: Cho $x,y$ là các số thực,chứng minh rằng :$A=\sqrt{x^{2}+4y^{2}+6x+9}+\sqrt{x^{2}+4y^{2}-2x+10}\geq 5$

Đề bài: ho tứ diện $SABC$ có các góc phẳng ở đỉnh $S$  vuông. Chứng minh rằng  : $\sqrt{3}S_{ABC} \geq S_{SBC}+S_{SAB}+S_{SAC}$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Các dạng bất đẳng thức khác

Đề bài: ho tứ diện $SABC$ có các góc phẳng ở đỉnh $S$  vuông. Chứng minh rằng  : $\sqrt{3}S_{ABC} \geq S_{SBC}+S_{SAB}+S_{SAC}$ Lời giải Đề bài: ho tứ diện $SABC$ có các góc phẳng ở đỉnh $S$  vuông. Chứng minh rằng  : $\sqrt{3}S_{ABC} \geq S_{SBC}+S_{SAB}+S_{SAC}$ Lời giải Áp dụng bất đẳng thức … [Đọc thêm...] vềĐề bài: ho tứ diện $SABC$ có các góc phẳng ở đỉnh $S$  vuông. Chứng minh rằng  : $\sqrt{3}S_{ABC} \geq S_{SBC}+S_{SAB}+S_{SAC}$

Đề bài: Chứng minh với mọi số nguyên dương n:a) \(\displaystyle \frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+…+\frac{1}{\sqrt{n}}\leq 2\sqrt{n}-1\)b) \(\displaystyle \frac{1}{2}\times \frac{3}{4}\times \ldots \times\frac{2n-1}{2n}\leq \frac{1}{\sqrt{2n}}\)

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Các dạng bất đẳng thức khác

Đề bài: Chứng minh với mọi số nguyên dương n:a) \(\displaystyle \frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{n}}\leq 2\sqrt{n}-1\)b) \(\displaystyle \frac{1}{2}\times \frac{3}{4}\times \ldots \times\frac{2n-1}{2n}\leq \frac{1}{\sqrt{2n}}\) Lời giải Đề bài: Chứng minh với mọi số nguyên dương n:a) … [Đọc thêm...] vềĐề bài: Chứng minh với mọi số nguyên dương n:a) \(\displaystyle \frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+…+\frac{1}{\sqrt{n}}\leq 2\sqrt{n}-1\)b) \(\displaystyle \frac{1}{2}\times \frac{3}{4}\times \ldots \times\frac{2n-1}{2n}\leq \frac{1}{\sqrt{2n}}\)

Đề bài: Với $a,b,c>0$ và $a^2+b^2+c^2=1$, chứng minh rằng:   $\frac{c}{a^2+b^2}+\frac{a}{b^2+c^2}+\frac{b}{c^2+a^2}\geq \frac{3\sqrt{3}}{2}$.

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Các dạng bất đẳng thức khác

Đề bài: Với $a,b,c>0$ và $a^2+b^2+c^2=1$, chứng minh rằng:   $\frac{c}{a^2+b^2}+\frac{a}{b^2+c^2}+\frac{b}{c^2+a^2}\geq \frac{3\sqrt{3}}{2}$. Lời giải Đề bài: Với $a,b,c>0$ và $a^2+b^2+c^2=1$, chứng minh rằng:   $\frac{c}{a^2+b^2}+\frac{a}{b^2+c^2}+\frac{b}{c^2+a^2}\geq \frac{3\sqrt{3}}{2}$. Lời giải … [Đọc thêm...] vềĐề bài: Với $a,b,c>0$ và $a^2+b^2+c^2=1$, chứng minh rằng:   $\frac{c}{a^2+b^2}+\frac{a}{b^2+c^2}+\frac{b}{c^2+a^2}\geq \frac{3\sqrt{3}}{2}$.

Đề bài: Cho $ x,y,z\geq 0$ chứng minh $\sqrt{x^{2}+xy+y^{2}}+\sqrt{y^{2}+yz+z^{2}}+\sqrt{z^{2}+zx+x^{2}}\geq \left ( x+y+z \right )\sqrt{3} $

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Các dạng bất đẳng thức khác

Đề bài: Cho $ x,y,z\geq 0$ chứng minh $\sqrt{x^{2}+xy+y^{2}}+\sqrt{y^{2}+yz+z^{2}}+\sqrt{z^{2}+zx+x^{2}}\geq \left ( x+y+z \right )\sqrt{3} $ Lời giải Đề bài: Cho $ x,y,z\geq 0$ chứng minh $\sqrt{x^{2}+xy+y^{2}}+\sqrt{y^{2}+yz+z^{2}}+\sqrt{z^{2}+zx+x^{2}}\geq \left ( x+y+z \right )\sqrt{3} $ Lời giải … [Đọc thêm...] vềĐề bài: Cho $ x,y,z\geq 0$ chứng minh $\sqrt{x^{2}+xy+y^{2}}+\sqrt{y^{2}+yz+z^{2}}+\sqrt{z^{2}+zx+x^{2}}\geq \left ( x+y+z \right )\sqrt{3} $

  • « Chuyển đến Trang trước
  • Trang 1
  • Interim pages omitted …
  • Trang 38
  • Trang 39
  • Trang 40
  • Trang 41
  • Trang 42
  • Trang 43
  • Chuyển đến Trang sau »

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.