• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Trắc nghiệm Toán 12
  • Máy tính

Đề bài: Cho $\triangle  ABC$ có $3$ góc nhọn.Chứng minh rằng:$\tan A+\tan B+\tan C \geq 3 \sqrt {3}$

Đăng ngày: 11/07/2021 Biên tập: admin Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Ứng dụng hàm số để chứng minh Bất đẳng thức

adsense
Đề bài: Cho $\triangle  ABC$ có $3$ góc nhọn.Chứng minh rằng:$\tan A+\tan B+\tan C \geq 3 \sqrt {3}$

Bat dang thuc

Lời giải

Đề bài:
Cho $\triangle  ABC$ có $3$ góc nhọn.Chứng minh rằng:$\tan A+\tan B+\tan C \geq 3 \sqrt {3}$
Lời giải

adsense

Xét $f(x)=\tan x,x \in (0,\frac{\pi}{2})$
$f'(x)=\frac{1}{\cos^{2}x}$
$f”(x)=\frac{2\sin x}{\cos^{3}x} >0$
$\Rightarrow f$ là hàm số lõm trên $(0,\frac{\pi}{2})$
Theo BĐT Jensen:
$f(A)+f(B)+f(C) \geq 3f(\frac{A+B+C}{3})$
$\Rightarrow \tan A+\tan B+\tan C \geq 3\tan(\frac{A+B+C}{3})=3 \sqrt {3}$
Dấu “=” xảy ra $\Leftrightarrow \hat{A} = \hat{B} = \hat{C}\Leftrightarrow\triangle  ABC$ đều.
$\Rightarrow $ (ĐPCM)

=========
Chuyên mục: Ứng dụng hàm số để chứng minh Bất đẳng thức

Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Ứng dụng hàm số để chứng minh Bất đẳng thức

Bài liên quan:

  1. Đề bài: Tìm giá trị lớn nhất của hàm số :$f(x)=x+\sqrt{4-x^2}$ trên miền $-2\leq x\leq 2$.
  2. Đề bài: Cho $x,y \geq 0$ và $x+y=1$. Tìm giá trị lớn nhất và nhỏ nhất của biểu thức :                        $P=3^{2x}+3^y$.
  3. Đề bài: Tìm giá trị lớn nhất và nhỏ nhất của hàm số: $f(x)=\sqrt{3+x}+\sqrt{6-x}-\sqrt{18+3x-x^2}$ với $-3\leq x\leq 6$.
  4. Đề bài: Tìm giá trị lớn nhất của hàm số :$f(x)=x+\sqrt{4-x^2}$ trên miền $-2\leq x\leq 2$.
  5. Đề bài:  Chứng minh rằng với mọi số thực $a, b, c$ thỏa mãn điều kiện $a + b + c= 1$ thì:              $\frac{1}{3^a} + \frac{1}{3^b} + \frac{1}{3^c} \ge 3\left( {\frac{a}{3^a} + \frac{b}{3^b} + \frac{c}{3^c}} \right)$
  6. Đề bài: Tìm giá trị lớn nhất và nhỏ nhất của hàm số: $f(x)=\sqrt{3+x}+\sqrt{6-x}-\sqrt{18+3x-x^2}$ với $-3\leq x\leq 6$.
  7. Đề bài: 1)    Với $x \in [ – 1;1] $,   chứng minh $\sqrt[4]{2} < \sqrt[4]{{1 - x}} + \sqrt[4]{{1 + x}} \le 2$2)    Tìm miền giá trị của   $y=\sin^{2n}x+\cos^{2n}x$ với $n\in Z^+$ 3)    Chứng minh:   $4^{|\sin x|} + 2^{|\cos x|} \ge 3$
  8. Đề bài:  Chứng minh rằng với mọi số thực $a, b, c$ thỏa mãn điều kiện $a + b + c= 1$ thì:              $\frac{1}{3^a} + \frac{1}{3^b} + \frac{1}{3^c} \ge 3\left( {\frac{a}{3^a} + \frac{b}{3^b} + \frac{c}{3^c}} \right)$
  9. Đề bài: Chứng minh rằng nếu $0 < b < a$ thì $\frac{{a - b}}{a} < \ln \frac{a}{b} < \frac{{a - b}}{b}$
  10. Đề bài: 1)    Với $x \in [ – 1;1] $,   chứng minh $\sqrt[4]{2} < \sqrt[4]{{1 - x}} + \sqrt[4]{{1 + x}} \le 2$2)    Tìm miền giá trị của   $y=\sin^{2n}x+\cos^{2n}x$ với $n\in Z^+$ 3)    Chứng minh:   $4^{|\sin x|} + 2^{|\cos x|} \ge 3$
  11. Đề bài: Chứng minh rằng nếu $0
  12. Đề bài: Chứng minh rằng nếu $0 < b < a$ thì $\frac{{a - b}}{a} < \ln \frac{a}{b} < \frac{{a - b}}{b}$
  13. Đề bài: Chứng minh rằng $\sqrt{t}>\ln \sqrt{t}$ với $t>0$
  14. Đề bài: Chứng minh rằng nếu $0
  15. Đề bài:  Chứng minh rằng $\sin20^0>\frac{1}{3}$

Reader Interactions

Trả lời Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC




Booktoan.com (2015 - 2023) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
THÔNG TIN:
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.