• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Toán 12
  • Toán 11
  • Toán 10
  • Trắc nghiệm
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán

Bất đẳng thức - Bài tập tự luận

Đề bài: Chứng minh rằng:$1+\frac{1}{2}C^{1}_{n}+\frac{1}{3}C^{2}_{n}+…+\frac{1}{n+1}C^{n}_{n}

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Các dạng bất đẳng thức khác

Đề bài: Chứng minh rằng:$1+\frac{1}{2}C^{1}_{n}+\frac{1}{3}C^{2}_{n}+...+\frac{1}{n+1}C^{n}_{n} Lời giải Đề bài: Chứng minh rằng:$1+\frac{1}{2}C^{1}_{n}+\frac{1}{3}C^{2}_{n}+...+\frac{1}{n+1}C^{n}_{n} Lời giải Xét: $f(x)=(1+x)^{n}=\sum\limits_{k=0}^n C^{k}_{n}1^{n-k}x^{k}$                  … [Đọc thêm...] vềĐề bài: Chứng minh rằng:$1+\frac{1}{2}C^{1}_{n}+\frac{1}{3}C^{2}_{n}+…+\frac{1}{n+1}C^{n}_{n}

Đề bài: chứng minh với mọi số nguyên dương n:a) \(\frac{1}{n+1}+\frac{1}{n+2}+\frac{1}{2n}\geq \frac{1}{2}\)b)\(\frac{1}{1\times 3}+\frac{1}{1\times 3\times 5}+…+\frac{1}{1\times 3\times 5…\left ( 2n+1 \right )}

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Các dạng bất đẳng thức khác

Đề bài: chứng minh với mọi số nguyên dương n:a) \(\frac{1}{n+1}+\frac{1}{n+2}+\frac{1}{2n}\geq \frac{1}{2}\)b)\(\frac{1}{1\times 3}+\frac{1}{1\times 3\times 5}+...+\frac{1}{1\times 3\times 5...\left ( 2n+1 \right )} Lời giải Đề bài: chứng minh với mọi số nguyên dương n:a) \(\frac{1}{n+1}+\frac{1}{n+2}+\frac{1}{2n}\geq \frac{1}{2}\)b)\(\frac{1}{1\times … [Đọc thêm...] vềĐề bài: chứng minh với mọi số nguyên dương n:a) \(\frac{1}{n+1}+\frac{1}{n+2}+\frac{1}{2n}\geq \frac{1}{2}\)b)\(\frac{1}{1\times 3}+\frac{1}{1\times 3\times 5}+…+\frac{1}{1\times 3\times 5…\left ( 2n+1 \right )}

Đề bài: Với $a,b,c>0$ chứng minh rằng:   $\frac{1}{a^3+b^3+abc}+\frac{1}{b^3+c^3+abc}+\frac{1}{c^3+a^3+abc}\leq \frac{1}{abc}$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Các dạng bất đẳng thức khác

Đề bài: Với $a,b,c>0$ chứng minh rằng:   $\frac{1}{a^3+b^3+abc}+\frac{1}{b^3+c^3+abc}+\frac{1}{c^3+a^3+abc}\leq \frac{1}{abc}$ Lời giải Đề bài: Với $a,b,c>0$ chứng minh rằng:   $\frac{1}{a^3+b^3+abc}+\frac{1}{b^3+c^3+abc}+\frac{1}{c^3+a^3+abc}\leq \frac{1}{abc}$ Lời giải ta có:   … [Đọc thêm...] vềĐề bài: Với $a,b,c>0$ chứng minh rằng:   $\frac{1}{a^3+b^3+abc}+\frac{1}{b^3+c^3+abc}+\frac{1}{c^3+a^3+abc}\leq \frac{1}{abc}$

Đề bài: Gọi \( x_{1},x_{2} \) là các nghiệm của phương trình  \(x^{2}+2kx+a^{2}=0   (a\neq 0) \)Định k để \( \left(\frac{x_{1}}{x_{2}}\right)^{2}+\left(\frac{x_{2}}{x_{1}}\right)^{2}\geq5 \)

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Các dạng bất đẳng thức khác

Đề bài: Gọi \( x_{1},x_{2} \) là các nghiệm của phương trình  \(x^{2}+2kx+a^{2}=0   (a\neq 0) \)Định k để \( \left(\frac{x_{1}}{x_{2}}\right)^{2}+\left(\frac{x_{2}}{x_{1}}\right)^{2}\geq5 \) Lời giải Đề bài: Gọi \( x_{1},x_{2} \) là các nghiệm của phương trình  \(x^{2}+2kx+a^{2}=0   (a\neq 0) \)Định k để \( … [Đọc thêm...] vềĐề bài: Gọi \( x_{1},x_{2} \) là các nghiệm của phương trình  \(x^{2}+2kx+a^{2}=0   (a\neq 0) \)Định k để \( \left(\frac{x_{1}}{x_{2}}\right)^{2}+\left(\frac{x_{2}}{x_{1}}\right)^{2}\geq5 \)

Đề bài: Cho $a,b,c\in (0,1)$, chứng minh rằng ít nhất một trong cách bất đẳng thức sau là sai:                   $a(1-b)>\frac{1}{4},b(1-c)>\frac{1}{4},c(1-a)>\frac{1}{4}$.

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Các dạng bất đẳng thức khác

Đề bài: Cho $a,b,c\in (0,1)$, chứng minh rằng ít nhất một trong cách bất đẳng thức sau là sai:                   $a(1-b)>\frac{1}{4},b(1-c)>\frac{1}{4},c(1-a)>\frac{1}{4}$. Lời giải Đề bài: Cho $a,b,c\in (0,1)$, chứng minh rằng ít nhất một trong cách bất đẳng thức sau là sai:                   $a(1-b)>\frac{1}{4},b(1-c)>\frac{1}{4},c(1-a)>\frac{1}{4}$. Lời … [Đọc thêm...] vềĐề bài: Cho $a,b,c\in (0,1)$, chứng minh rằng ít nhất một trong cách bất đẳng thức sau là sai:                   $a(1-b)>\frac{1}{4},b(1-c)>\frac{1}{4},c(1-a)>\frac{1}{4}$.

Đề bài: 1)   Cho tam giác $ABC$ thỏa mãn điều kiện: $max ({h_a},{h_b},{h_c}) < 1$Chứng minh rằng:  khi đó ta có   $S < \frac{{\sqrt 3 }}{3}$2)  Cho tam giác $ABC$ thỏa mãn điều kiện : ${l_a} + {l_b} + {l_c} = \frac{{a + b + c}}{3}(\frac{{ab}}{{a + b}} + \frac{{bc}}{{b + c}} + \frac{{ac}}{{a + c}})$Chứng minh rằng: $R \ge 1$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức trong tam giác

Đề bài: 1)   Cho tam giác $ABC$ thỏa mãn điều kiện: $max ({h_a},{h_b},{h_c}) < 1$Chứng minh rằng:  khi đó ta có   $S < \frac{{\sqrt 3 }}{3}$2)  Cho tam giác $ABC$ thỏa mãn điều kiện : ${l_a} + {l_b} + {l_c} = \frac{{a + b + c}}{3}(\frac{{ab}}{{a + b}} + \frac{{bc}}{{b + c}} + \frac{{ac}}{{a + c}})$Chứng minh rằng: $R \ge 1$ Lời giải Đề bài: 1)   Cho tam giác … [Đọc thêm...] vềĐề bài: 1)   Cho tam giác $ABC$ thỏa mãn điều kiện: $max ({h_a},{h_b},{h_c}) < 1$Chứng minh rằng:  khi đó ta có   $S < \frac{{\sqrt 3 }}{3}$2)  Cho tam giác $ABC$ thỏa mãn điều kiện : ${l_a} + {l_b} + {l_c} = \frac{{a + b + c}}{3}(\frac{{ab}}{{a + b}} + \frac{{bc}}{{b + c}} + \frac{{ac}}{{a + c}})$Chứng minh rằng: $R \ge 1$

Đề bài: Cho: $\triangle ABC$ và $x,y,z>0$.Chứng minh rằng:$\frac{1}{x}\cos A+\frac{1}{y}\cos B+\frac{1}{z}\cos C\leq \frac{x^{2}+y^{2}+z^{2}}{2xyz}$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức trong tam giác

Đề bài: Cho: $\triangle ABC$ và $x,y,z>0$.Chứng minh rằng:$\frac{1}{x}\cos A+\frac{1}{y}\cos B+\frac{1}{z}\cos C\leq \frac{x^{2}+y^{2}+z^{2}}{2xyz}$ Lời giải Đề bài: Cho: $\triangle ABC$ và $x,y,z>0$.Chứng minh rằng:$\frac{1}{x}\cos A+\frac{1}{y}\cos B+\frac{1}{z}\cos C\leq \frac{x^{2}+y^{2}+z^{2}}{2xyz}$ Lời giải … [Đọc thêm...] vềĐề bài: Cho: $\triangle ABC$ và $x,y,z>0$.Chứng minh rằng:$\frac{1}{x}\cos A+\frac{1}{y}\cos B+\frac{1}{z}\cos C\leq \frac{x^{2}+y^{2}+z^{2}}{2xyz}$

Đề bài: Chứng minh:a) $\frac{\sin x+\sin y}{2}\leq \sin\frac{x+y}{2}$     với   $0\leq x+y\leq 2\pi$b) $\frac{\cos x+\cos y}{2}\leq \cos\frac{x+y}{2}$   với   $-\pi

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức lượng giác

Đề bài: Chứng minh:a) $\frac{\sin x+\sin y}{2}\leq \sin\frac{x+y}{2}$     với   $0\leq x+y\leq 2\pi$b) $\frac{\cos x+\cos y}{2}\leq \cos\frac{x+y}{2}$   với   $-\pi Lời giải Đề bài: Chứng minh:a) $\frac{\sin x+\sin y}{2}\leq \sin\frac{x+y}{2}$     với   $0\leq x+y\leq 2\pi$b) $\frac{\cos x+\cos y}{2}\leq \cos\frac{x+y}{2}$   với   $-\pi Lời giải … [Đọc thêm...] vềĐề bài: Chứng minh:a) $\frac{\sin x+\sin y}{2}\leq \sin\frac{x+y}{2}$     với   $0\leq x+y\leq 2\pi$b) $\frac{\cos x+\cos y}{2}\leq \cos\frac{x+y}{2}$   với   $-\pi

Đề bài: Chứng minh rằng:               $\sqrt{a^2-1}+\sqrt{3}\leq 2|a|$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức lượng giác

Đề bài: Chứng minh rằng:               $\sqrt{a^2-1}+\sqrt{3}\leq 2|a|$ Lời giải Đề bài: Chứng minh rằng:               $\sqrt{a^2-1}+\sqrt{3}\leq 2|a|$ Lời giải Điều kiện: $a^2-1\geq 0\Leftrightarrow |a|\geq 1$. Đặt $\displaystyle |a|=\frac{1}{\cos\alpha}$, với … [Đọc thêm...] vềĐề bài: Chứng minh rằng:               $\sqrt{a^2-1}+\sqrt{3}\leq 2|a|$

Đề bài: Chứng minh: \((a+b+c)^{2}\leq 3(a^{2}+b^{2}+c^{2}) \forall a,b,c\in R\).

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức cơ bản

Đề bài: Chứng minh: \((a+b+c)^{2}\leq 3(a^{2}+b^{2}+c^{2}) \forall a,b,c\in R\). Lời giải Ta có: \((a+b+c)^{2}\leq 3(a^{2}+b^{2}+c^{2})\)\(\Leftrightarrow a^{2}+b^{2}+c^{2}+2(ab+bc+ac)\leq 3(a^{2}+b^{2}+c^{2})\)\(\Leftrightarrow 2(ab+bc+ca)\leq 2(a^{2}+b^{2}+c^{2})\)\(\Leftrightarrow (a^{2}+b^{2}-2ab)+(b^{2}+c^{2}-2bc)+(c^{2}+a^{2}-2ac)\geq 0\)\(\Leftrightarrow … [Đọc thêm...] vềĐề bài: Chứng minh: \((a+b+c)^{2}\leq 3(a^{2}+b^{2}+c^{2}) \forall a,b,c\in R\).

  • « Chuyển đến Trang trước
  • Trang 1
  • Trang 2
  • Trang 3
  • Trang 4
  • Trang 5
  • Interim pages omitted …
  • Trang 43
  • Chuyển đến Trang sau »

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.