• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Toán 12
  • Toán 11
  • Toán 10
  • Trắc nghiệm
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán

Bất đẳng thức - Bài tập tự luận

Đề bài: Chứng minh rằng: \(a^{3}+2\geq a^{2}+2\sqrt{a}\) với \(a\geq 0\)   (1)

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức cơ bản

Đề bài: Chứng minh rằng: \(a^{3}+2\geq a^{2}+2\sqrt{a}\) với \(a\geq 0\)   (1) Lời giải Ta có: (1) \(\Leftrightarrow a^{3}+2-a^{2}-2\sqrt{a}\geq 0 \\\Leftrightarrow a^{2}(a-1)-2(\sqrt{a}-1)\geq 0\)\(\Leftrightarrow a^{2}(\sqrt{a}+1)(\sqrt{a}-1)-2(\sqrt{a}-1)\geq 0\)\(\Leftrightarrow (\sqrt{a}-1)[a^{2}(\sqrt{a}+1)-2]\geq 0\)   (2)_Nếu \(a\geq 1 \Rightarrow … [Đọc thêm...] vềĐề bài: Chứng minh rằng: \(a^{3}+2\geq a^{2}+2\sqrt{a}\) với \(a\geq 0\)   (1)

Đề bài: Cho $a, b>0$. Chứng minh:a) $\frac{a}{b}+\frac{b}{a}\geq 2           (1)$ Dấu = chỉ xảy ra khi $a=b$.b) $\frac{1}{a}+\frac{1}{b}\geq \frac{4}{a+b}      (2)$ Dấu = chỉ xảy ra khi $a=b$.

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức cơ bản

Đề bài: Cho $a, b>0$. Chứng minh:a) $\frac{a}{b}+\frac{b}{a}\geq 2           (1)$ Dấu = chỉ xảy ra khi $a=b$.b) $\frac{1}{a}+\frac{1}{b}\geq \frac{4}{a+b}      (2)$ Dấu = chỉ xảy ra khi $a=b$. Lời giải a) Ta có: $(a-b)^2\geq 0\Rightarrow a^2+b^2\geq 2ab\Rightarrow \frac{a^2+b^2}{ab}\geq 2\Rightarrow (1)$b) $(a-b)^2+4ab\geq 4ab\Rightarrow (a+b)^2\geq … [Đọc thêm...] vềĐề bài: Cho $a, b>0$. Chứng minh:a) $\frac{a}{b}+\frac{b}{a}\geq 2           (1)$ Dấu = chỉ xảy ra khi $a=b$.b) $\frac{1}{a}+\frac{1}{b}\geq \frac{4}{a+b}      (2)$ Dấu = chỉ xảy ra khi $a=b$.

Đề bài: Cho các số thực $a \geq 0, b \geq 0, c \geq 2$ thỏa mãn và $ab+2(a+b) \geq 5     (1)$Chứng minh $Q=a^4+4a^2+6b^2+\frac{91}{32}c^2+\frac{32}{27}c+\frac{27}{c^4} \geq \frac{11419}{432}$   

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức Côsi

Đề bài: Cho các số thực $a \geq 0, b \geq 0, c \geq 2$ thỏa mãn và $ab+2(a+b) \geq 5     (1)$Chứng minh $Q=a^4+4a^2+6b^2+\frac{91}{32}c^2+\frac{32}{27}c+\frac{27}{c^4} \geq \frac{11419}{432}$    Lời giải Đề bài: Cho các số thực $a \geq 0, b \geq 0, c \geq 2$ thỏa mãn và $ab+2(a+b) \geq 5     (1)$Chứng minh … [Đọc thêm...] vềĐề bài: Cho các số thực $a \geq 0, b \geq 0, c \geq 2$ thỏa mãn và $ab+2(a+b) \geq 5     (1)$Chứng minh $Q=a^4+4a^2+6b^2+\frac{91}{32}c^2+\frac{32}{27}c+\frac{27}{c^4} \geq \frac{11419}{432}$   

Đề bài: Tìm giá trị lớn nhất của:  \(f(x,y)=(2x-x^{2})(y-2y^{2}); 0\leq x\leq 2; 0\leq y\leq \frac{1}{2}\)

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức Côsi

Đề bài: Tìm giá trị lớn nhất của:  \(f(x,y)=(2x-x^{2})(y-2y^{2}); 0\leq x\leq 2; 0\leq y\leq \frac{1}{2}\) Lời giải Đề bài: Tìm giá trị lớn nhất của:  \(f(x,y)=(2x-x^{2})(y-2y^{2}); 0\leq x\leq 2; 0\leq y\leq \frac{1}{2}\) Lời giải - Vì \(0\leq x\leq 2 \Rightarrow 2-x\geq 0\), nên ta … [Đọc thêm...] vềĐề bài: Tìm giá trị lớn nhất của:  \(f(x,y)=(2x-x^{2})(y-2y^{2}); 0\leq x\leq 2; 0\leq y\leq \frac{1}{2}\)

Đề bài: 1)    Với $x \in [ – 1;1] $,   chứng minh $\sqrt[4]{2} < \sqrt[4]{{1 - x}} + \sqrt[4]{{1 + x}} \le 2$2)    Tìm miền giá trị của   $y=\sin^{2n}x+\cos^{2n}x$ với $n\in Z^+$ 3)    Chứng minh:   $4^{|\sin x|} + 2^{|\cos x|} \ge 3$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức Côsi

Đề bài: 1)    Với $x \in [ - 1;1] $,   chứng minh $\sqrt[4]{2} < \sqrt[4]{{1 - x}} + \sqrt[4]{{1 + x}} \le 2$2)    Tìm miền giá trị của   $y=\sin^{2n}x+\cos^{2n}x$ với $n\in Z^+$ 3)    Chứng minh:   $4^{|\sin x|} + 2^{|\cos x|} \ge 3$ Lời giải Đề bài: 1)    Với $x \in [ - 1;1] $,   chứng minh $\sqrt[4]{2} < \sqrt[4]{{1 - x}} + \sqrt[4]{{1 + … [Đọc thêm...] vềĐề bài: 1)    Với $x \in [ – 1;1] $,   chứng minh $\sqrt[4]{2} < \sqrt[4]{{1 - x}} + \sqrt[4]{{1 + x}} \le 2$2)    Tìm miền giá trị của   $y=\sin^{2n}x+\cos^{2n}x$ với $n\in Z^+$ 3)    Chứng minh:   $4^{|\sin x|} + 2^{|\cos x|} \ge 3$

Đề bài: Cho $a,b,c$ dương chứng minh: $(a+b+c)(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a})\geq \frac{9}{2}$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức Côsi

Đề bài: Cho $a,b,c$ dương chứng minh: $(a+b+c)(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a})\geq \frac{9}{2}$ Lời giải Đề bài: Cho $a,b,c$ dương chứng minh: $(a+b+c)(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a})\geq \frac{9}{2}$ Lời giải Áp dụng bất đẳng thức cosi cho 3 số dương … [Đọc thêm...] vềĐề bài: Cho $a,b,c$ dương chứng minh: $(a+b+c)(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a})\geq \frac{9}{2}$

Đề bài: Cho các số thực $a,b$ không âm, chứng minh rằng:    $a^3+2b^3\geq 3ab^2$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức Côsi

Đề bài: Cho các số thực $a,b$ không âm, chứng minh rằng:    $a^3+2b^3\geq 3ab^2$ Lời giải Đề bài: Cho các số thực $a,b$ không âm, chứng minh rằng:    $a^3+2b^3\geq 3ab^2$ Lời giải Ta có $VT=a^3+b^3+b^3\geq 3\sqrt[3]{a^3b^3b^3}=3ab^2$, đpcm.Dấu đẳng thức xảy ra khi:    $a^3=b^3=b^3\Leftrightarrow … [Đọc thêm...] vềĐề bài: Cho các số thực $a,b$ không âm, chứng minh rằng:    $a^3+2b^3\geq 3ab^2$

Đề bài: Cho $a,b,c,d>0$.Chứng minh rằng:$\frac{a}{b+2c+3d}+\frac{b}{c+2d+3a}+\frac{c}{d+2a+3b}+\frac{d}{a+2b+3c} \geq \frac{2}{3}$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức Côsi

Đề bài: Cho $a,b,c,d>0$.Chứng minh rằng:$\frac{a}{b+2c+3d}+\frac{b}{c+2d+3a}+\frac{c}{d+2a+3b}+\frac{d}{a+2b+3c} \geq \frac{2}{3}$ Lời giải Đề bài: Cho $a,b,c,d>0$.Chứng minh rằng:$\frac{a}{b+2c+3d}+\frac{b}{c+2d+3a}+\frac{c}{d+2a+3b}+\frac{d}{a+2b+3c} \geq \frac{2}{3}$ Lời giải … [Đọc thêm...] vềĐề bài: Cho $a,b,c,d>0$.Chứng minh rằng:$\frac{a}{b+2c+3d}+\frac{b}{c+2d+3a}+\frac{c}{d+2a+3b}+\frac{d}{a+2b+3c} \geq \frac{2}{3}$

Đề bài: Cho $a,b,c\geq 0$ và $a+b+c=1$.Chứng minh rằng: $p=abc\left ( a+b \right )\left ( b+c \right )\left ( c+a \right )\leq \frac{8}{729}$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức Côsi

Đề bài: Cho $a,b,c\geq 0$ và $a+b+c=1$.Chứng minh rằng: $p=abc\left ( a+b \right )\left ( b+c \right )\left ( c+a \right )\leq \frac{8}{729}$ Lời giải Đề bài: Cho $a,b,c\geq 0$ và $a+b+c=1$.Chứng minh rằng: $p=abc\left ( a+b \right )\left ( b+c \right )\left ( c+a \right )\leq \frac{8}{729}$ Lời giải … [Đọc thêm...] vềĐề bài: Cho $a,b,c\geq 0$ và $a+b+c=1$.Chứng minh rằng: $p=abc\left ( a+b \right )\left ( b+c \right )\left ( c+a \right )\leq \frac{8}{729}$

Đề bài: Cho $n$ là một số tự nhiên và $a \in [ 0; n ]$. Tìm giá trị lớn nhất của biểu thức                           $| {\sum\limits_{i = 1}^n {\sin 2x_i} }|$, biết rằng $\sum\limits_{i = 1}^n {\sin^2}{x_i}  = a$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức Bunhiacốpxki

Đề bài: Cho $n$ là một số tự nhiên và $a \in [ 0; n ]$. Tìm giá trị lớn nhất của biểu thức                           $| {\sum\limits_{i = 1}^n {\sin 2x_i} }|$, biết rằng $\sum\limits_{i = 1}^n {\sin^2}{x_i}  = a$ Lời giải Đề bài: Cho $n$ là một số tự nhiên và $a \in [ 0; n ]$. Tìm giá trị lớn nhất của biểu thức                           $| … [Đọc thêm...] vềĐề bài: Cho $n$ là một số tự nhiên và $a \in [ 0; n ]$. Tìm giá trị lớn nhất của biểu thức                           $| {\sum\limits_{i = 1}^n {\sin 2x_i} }|$, biết rằng $\sum\limits_{i = 1}^n {\sin^2}{x_i}  = a$

  • « Chuyển đến Trang trước
  • Trang 1
  • Interim pages omitted …
  • Trang 23
  • Trang 24
  • Trang 25
  • Trang 26
  • Trang 27
  • Interim pages omitted …
  • Trang 43
  • Chuyển đến Trang sau »

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.