• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Trắc nghiệm Toán 12
  • Máy tính

Đề bài: Cho $a,b,c,d>0$.Chứng minh rằng:$\frac{a}{b+2c+3d}+\frac{b}{c+2d+3a}+\frac{c}{d+2a+3b}+\frac{d}{a+2b+3c} \geq \frac{2}{3}$

Đăng ngày: 11/07/2021 Biên tập: admin Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức Côsi

adsense
Đề bài: Cho $a,b,c,d>0$.Chứng minh rằng:$\frac{a}{b+2c+3d}+\frac{b}{c+2d+3a}+\frac{c}{d+2a+3b}+\frac{d}{a+2b+3c} \geq \frac{2}{3}$

Bat dang thuc

Lời giải

Đề bài:
Cho $a,b,c,d>0$.Chứng minh rằng:$\frac{a}{b+2c+3d}+\frac{b}{c+2d+3a}+\frac{c}{d+2a+3b}+\frac{d}{a+2b+3c} \geq \frac{2}{3}$
Lời giải

adsense

Đặt:
$\begin{cases}6x=b+2c+3d >0\\ 6y= c+2d+3a >0\\ 6z=d+2a+3b>0 \\ 6t=a+2b+3c>0\end{cases}$
$\Leftrightarrow \begin{cases}4a=-5x+7y+z+t \\ 4b=x-5y+7z
+t\\ 4c=x+y-5z+7t\\ 4d=7x+y+z-5t\end{cases}$
Theo BĐT Cauchy:
$4(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}+\frac{d}{t})=\frac{-5x+7y+z+t}{x}+\frac{x-5y+7z
+t}{y}+\frac{x+y-5z+7t}{z}+\frac{7x+y+z-5t}{t}$
$=-20+7(\frac{y}{x}+\frac{z}{y}+\frac{t}{z}+\frac{x}{t})+(\frac{x}{z}+\frac{z}{x})+(\frac{y}{t}+\frac{t}{y})+(\frac{t}{x}+\frac{x}{y}+\frac{y}{z}+\frac{z}{t})$
$\geq -20+7.4+2+2+4=16$
$\Rightarrow \frac{a}{x}+\frac{b}{y}+\frac{c}{z}+\frac{d}{t}\geq 4$
$\Rightarrow \frac{a}{6x}+\frac{b}{6y}+\frac{c}{6z}+\frac{d}{6t}\geq \frac{4}{6}=\frac{2}{3}$
Dấu “=” xảy ra $\Leftrightarrow x=y=z=t \Leftrightarrow a=b=c=d$
$\Rightarrow $ (ĐPCM)

=========
Chuyên mục: Bất đẳng thức Côsi

Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức Côsi

Bài liên quan:

  1. Đề bài: $1.$ Cho hình thang cân $ABCD$ có đáy là $AD, BC$, $\widehat {BAD} = {30^0}$. Biết  $\overrightarrow{AB}=\overrightarrow {a} ,\overrightarrow {AD}  =\overrightarrow {b} .$Hãy biểu diễn các véctơ $\overrightarrow {BC} ,\overrightarrow {CD},\overrightarrow {AC}  ,\overrightarrow {BD} $ theo các véctơ $\overrightarrow {a},\overrightarrow {b}  .$$2.$ Chứng minh rằng $\forall  \in (0;\frac{\pi}{2} )$ đều có$cosx +sinx +tanx+cotx+\frac{1}{sinx }+\frac{1}{cosx } >6$
  2. Đề bài: Cho $x,y>0; x+y
  3. Đề bài: Chứng minh rằng: \(\frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}\geq a+b+c\) với \(a,b,c\geq 0\).
  4. Đề bài: Phân tích số $16$ thành tổng của $2$ số dương sao cho tổng bình phương của chúng là nhỏ nhất.
  5. Đề bài: Chứng minh rằng với mọi số thực $a,b$ thỏa mãn $a\geq \frac{1}{2}, a>b$.  Ta có: $\frac{2a^3+1}{4b(a-b)}\geq 3$
  6. Đề bài: Cho $a,b,c,k$ là các số nguyên dương, $k\geq \frac{2}{3}$. Chứng minh rằng:     $(\frac{a}{b+c})^k+(\frac{b}{c+a})^k+(\frac{c}{a+b})^k\geq \frac{3}{2^k}        (1)$
  7. Đề bài: Cho $a,b,c>0$.Chứng minh rằng:$\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}
  8. Đề bài: Cho $x,y,z>0$ và $xyz=xy+yz+zx$.Chứng minh: $P=\frac{1}{x+2y+3z}+\frac{1}{2x+3y+z}+\frac{1}{3x+y+2z}
  9. Đề bài: Cho $x,y,z,t>0$. Tìm giá trị nhỏ nhất của biểu thức:$P=\frac{x-t}{t+y}+\frac{t-y}{y+z}+\frac{y-z}{z+x}+\frac{z-x}{x+t}$.
  10. Đề bài: Xác định dạng của tam giác nếu   $S = \frac{ \sqrt{3} }{ 36} (a+b+c)^2     (1)$
  11. Đề bài: Chứng minh rằng : $\forall x \in \left( {0,\frac{\pi }{2}} \right)$ ta có ${2^{2\sin x}} + {2^{tanx}} > {2^{\frac{{3x}}{2} + 1}}$
  12. Đề bài: Cho hai số dương $a,b$ thỏa mãn $a+b=1$. Chứng minh rằng:  $(a+\frac{1}{a})^2+(b+\frac{1}{b})^2\geq \frac{25}{2}$
  13. Đề bài: Chứng minh rằng với mọi $x\in R$, ta có:     $(\frac{12}{5})^x+(\frac{15}{4})^x+(\frac{20}{3})^x\geq 3^x+4^x+5^x$. Khi nào đẳng thức xảy ra?
  14. Đề bài: Cho $a,b,c,d>0$.Chứng minh rằng:$\frac{a^{2}}{b^{5}}+\frac{b^{2}}{c^{5}}+\frac{c^{2}}{d^{5}}+\frac{d^{2}}{a^{5}}\geq \frac{1}{a^{3}}+\frac{1}{b^{3}}+\frac{1}{c^{3}}+\frac{1}{d^{3}}$
  15. Đề bài: Cho $x,y,z>0$ và $x^2+y^2+z^2=1$.Chứng minh $\frac{x}{y^2+z^2}+\frac{y}{x^2+z^2}+\frac{z}{y^2+x^2}\geq \frac{3\sqrt{3}}{2}$.

Reader Interactions

Trả lời Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC




Booktoan.com (2015 - 2023) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
THÔNG TIN:
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.