• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Toán 12
  • Toán 11
  • Toán 10
  • Trắc nghiệm
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán

Bất đẳng thức - Bài tập tự luận

Đề bài: Cho tam giác $ABC$. Chứng minh rằng : $\frac{{{h_a}}}{{{l_a}}} \ge \sqrt {\frac{{2r}}{R}} $

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức trong tam giác

Đề bài: Cho tam giác $ABC$. Chứng minh rằng : $\frac{{{h_a}}}{{{l_a}}} \ge \sqrt {\frac{{2r}}{R}} $ Lời giải Đề bài: Cho tam giác $ABC$. Chứng minh rằng : $\frac{{{h_a}}}{{{l_a}}} \ge \sqrt {\frac{{2r}}{R}} $ Lời giải $\frac{{{h_a}}}{{{l_a}}} \ge \sqrt {\frac{{2r}}{R}}  \Leftrightarrow … [Đọc thêm...] vềĐề bài: Cho tam giác $ABC$. Chứng minh rằng : $\frac{{{h_a}}}{{{l_a}}} \ge \sqrt {\frac{{2r}}{R}} $

Đề bài: Cho $\triangle ABC$ chứng minh rằng:   $  \sin{\frac{A}{2}}. \sin{\frac{B}{2}}. \sin{\frac{C}{2}}  \leq \frac{1}{8}$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức trong tam giác

Đề bài: Cho $\triangle ABC$ chứng minh rằng:   $  \sin{\frac{A}{2}}. \sin{\frac{B}{2}}. \sin{\frac{C}{2}}  \leq \frac{1}{8}$ Lời giải Đề bài: Cho $\triangle ABC$ chứng minh rằng:   $  \sin{\frac{A}{2}}. \sin{\frac{B}{2}}. \sin{\frac{C}{2}}  \leq \frac{1}{8}$ Lời giải Ta luôn có … [Đọc thêm...] vềĐề bài: Cho $\triangle ABC$ chứng minh rằng:   $  \sin{\frac{A}{2}}. \sin{\frac{B}{2}}. \sin{\frac{C}{2}}  \leq \frac{1}{8}$

Đề bài: Chứng minh rằng:   $4\sin^2\frac{a+b}{2}.\cos^2\frac{a-b}{2}+\cos2a+\cos2b\leq 2        (1)$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức lượng giác

Đề bài: Chứng minh rằng:   $4\sin^2\frac{a+b}{2}.\cos^2\frac{a-b}{2}+\cos2a+\cos2b\leq 2        (1)$ Lời giải Đề bài: Chứng minh rằng:   $4\sin^2\frac{a+b}{2}.\cos^2\frac{a-b}{2}+\cos2a+\cos2b\leq 2        (1)$ Lời giải Biến đổi tương đương bất đẳng thức về dạng:   $(\sin a+\sin … [Đọc thêm...] vềĐề bài: Chứng minh rằng:   $4\sin^2\frac{a+b}{2}.\cos^2\frac{a-b}{2}+\cos2a+\cos2b\leq 2        (1)$

Đề bài: Cho $3$ số dương $a, b, c$ thỏa $abc = 1$. Chứng minh rằng:  $ a + b + c \ge 3 $ bằng phương pháp phản chứng.

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức cơ bản

Đề bài: Cho $3$ số dương $a, b, c$ thỏa $abc = 1$. Chứng minh rằng:  $ a + b + c \ge 3 $ bằng phương pháp phản chứng. Lời giải Giả sử tồn tại 3 số dương a, b, c thỏa điều kiện  $ abc = 1 $  mà  $ a + b + c Ta có:  $ a + b + c Thay  $ abc = 1, $  ta có:  $ \begin{array}{l}{a^2}b + a{b^2} + 1  \Leftrightarrow a{b^2} + \left( {{a^2} - 3a} \right)b \end{array} $ … [Đọc thêm...] vềĐề bài: Cho $3$ số dương $a, b, c$ thỏa $abc = 1$. Chứng minh rằng:  $ a + b + c \ge 3 $ bằng phương pháp phản chứng.

Đề bài: Cho \(a\geq b\geq c>0\). Chứng minh rằng: \(\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\geq \frac{a}{b}+\frac{b}{c}+\frac{c}{a}\).

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức cơ bản

Đề bài: Cho \(a\geq b\geq c>0\). Chứng minh rằng: \(\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\geq \frac{a}{b}+\frac{b}{c}+\frac{c}{a}\). Lời giải Ta có: \(\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\geq \frac{a}{b}+\frac{b}{c}+\frac{c}{a}\)\(\Leftrightarrow b^{2}c+c^{2}a+a^{2}b\geq a^{2}c+b^{2}a+c^{2}b\)$\Leftrightarrow … [Đọc thêm...] vềĐề bài: Cho \(a\geq b\geq c>0\). Chứng minh rằng: \(\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\geq \frac{a}{b}+\frac{b}{c}+\frac{c}{a}\).

Đề bài: $1) $Chứng minh: $\forall a,\,b\, > 0;\,a,b \ne 1$ ta có $\left| {{{\log }_a}b + {{\log }_b}a} \right| \ge 2$$2)$Chứng minh:$\frac{1}{{{{\log }_2}\pi }} + \frac{1}{{{{\log }_{\frac{9}{2}}}\pi }} < 2$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức cơ bản

Đề bài: $1) $Chứng minh: $\forall a,\,b\, > 0;\,a,b \ne 1$ ta có $\left| {{{\log }_a}b + {{\log }_b}a} \right| \ge 2$$2)$Chứng minh:$\frac{1}{{{{\log }_2}\pi }} + \frac{1}{{{{\log }_{\frac{9}{2}}}\pi }} < 2$ Lời giải $1)$    Ta có:  ${\left( {{{\log }_a}b + {{\log }_b}a} \right)^2} = \log _a^2b + \log _b^2a + 2\,\,\,\,\,(1)$Áp dụng bất đẳng thức côsi:$\log _a^2b … [Đọc thêm...] vềĐề bài: $1) $Chứng minh: $\forall a,\,b\, > 0;\,a,b \ne 1$ ta có $\left| {{{\log }_a}b + {{\log }_b}a} \right| \ge 2$$2)$Chứng minh:$\frac{1}{{{{\log }_2}\pi }} + \frac{1}{{{{\log }_{\frac{9}{2}}}\pi }} < 2$

Đề bài: Cho $x,y,z$ là ba số dương và $\frac{1}{3^x}+\frac{1}{3^y}+\frac{1}{3^z}=1$. Chứng minh rằng:$\frac{9^x}{3^x+3^{y+z}}+\frac{9^y}{3^y+3^{x+z}}+\frac{9^z}{3^z+3^{x+y}}\geq \frac{3^x+3^y+3^z}{4}$.

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức Côsi

Đề bài: Cho $x,y,z$ là ba số dương và $\frac{1}{3^x}+\frac{1}{3^y}+\frac{1}{3^z}=1$. Chứng minh rằng:$\frac{9^x}{3^x+3^{y+z}}+\frac{9^y}{3^y+3^{x+z}}+\frac{9^z}{3^z+3^{x+y}}\geq \frac{3^x+3^y+3^z}{4}$. Lời giải Đề bài: Cho $x,y,z$ là ba số dương và $\frac{1}{3^x}+\frac{1}{3^y}+\frac{1}{3^z}=1$. Chứng minh … [Đọc thêm...] vềĐề bài: Cho $x,y,z$ là ba số dương và $\frac{1}{3^x}+\frac{1}{3^y}+\frac{1}{3^z}=1$. Chứng minh rằng:$\frac{9^x}{3^x+3^{y+z}}+\frac{9^y}{3^y+3^{x+z}}+\frac{9^z}{3^z+3^{x+y}}\geq \frac{3^x+3^y+3^z}{4}$.

Đề bài: Cho \(a>0, b>0\). Chứng minh rằng: \((1+\frac{a}{b})^{m}+(1+\frac{b}{a})^{m}\geq 2^{m+1}\) với \(m\in Z^+\).

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức Côsi

Đề bài: Cho \(a>0, b>0\). Chứng minh rằng: \((1+\frac{a}{b})^{m}+(1+\frac{b}{a})^{m}\geq 2^{m+1}\) với \(m\in Z^+\). Lời giải Đề bài: Cho \(a>0, b>0\). Chứng minh rằng: \((1+\frac{a}{b})^{m}+(1+\frac{b}{a})^{m}\geq 2^{m+1}\) với \(m\in Z^+\). Lời giải Theo BĐT Cauchy, ta … [Đọc thêm...] vềĐề bài: Cho \(a>0, b>0\). Chứng minh rằng: \((1+\frac{a}{b})^{m}+(1+\frac{b}{a})^{m}\geq 2^{m+1}\) với \(m\in Z^+\).

Đề bài: Tìm trên $D=[-\frac{1}{2};\frac{1}{3} ]$ giá trị lớn nhất  của $Q=(2x+1)^5(1-3x)^3$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức Côsi

Đề bài: Tìm trên $D=[-\frac{1}{2};\frac{1}{3} ]$ giá trị lớn nhất  của $Q=(2x+1)^5(1-3x)^3$ Lời giải Đề bài: Tìm trên $D=[-\frac{1}{2};\frac{1}{3} ]$ giá trị lớn nhất  của $Q=(2x+1)^5(1-3x)^3$ Lời giải Viết lại $Q=\frac{9^3}{10^3}(2x+1)^5[\frac{10}{9}(1-3x)]^3$. Trên $D$ ta có $2x+1 \geq 0; 1-3x … [Đọc thêm...] vềĐề bài: Tìm trên $D=[-\frac{1}{2};\frac{1}{3} ]$ giá trị lớn nhất  của $Q=(2x+1)^5(1-3x)^3$

Đề bài: Cho $a,b,c$ dương. Chứng minh: $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\geq \frac{9}{a+b+c}$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức Côsi

Đề bài: Cho $a,b,c$ dương. Chứng minh: $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\geq \frac{9}{a+b+c}$ Lời giải Đề bài: Cho $a,b,c$ dương. Chứng minh: $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\geq \frac{9}{a+b+c}$ Lời giải Áp dụng BĐT cosi cho 3 số dương:$a+b+c\geq 3 \sqrt[3]{abc}>0 ; … [Đọc thêm...] vềĐề bài: Cho $a,b,c$ dương. Chứng minh: $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\geq \frac{9}{a+b+c}$

  • « Chuyển đến Trang trước
  • Trang 1
  • Interim pages omitted …
  • Trang 21
  • Trang 22
  • Trang 23
  • Trang 24
  • Trang 25
  • Interim pages omitted …
  • Trang 43
  • Chuyển đến Trang sau »

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.