Đề bài: Chứng minh rằng với mọi số thực $a, b, c$ thỏa mãn điều kiện $a + b + c= 1$ thì: $\frac{1}{3^a} + \frac{1}{3^b} + \frac{1}{3^c} \ge 3\left( {\frac{a}{3^a} + \frac{b}{3^b} + \frac{c}{3^c}} \right)$ Lời giải Đề bài: Chứng minh rằng với mọi số thực $a, b, c$ thỏa mãn điều kiện $a + b + c= 1$ thì: $\frac{1}{3^a} + \frac{1}{3^b} … [Đọc thêm...] vềĐề bài: Chứng minh rằng với mọi số thực $a, b, c$ thỏa mãn điều kiện $a + b + c= 1$ thì: $\frac{1}{3^a} + \frac{1}{3^b} + \frac{1}{3^c} \ge 3\left( {\frac{a}{3^a} + \frac{b}{3^b} + \frac{c}{3^c}} \right)$
Bất đẳng thức - Bài tập tự luận
Đề bài: Tìm giá trị lớn nhất và nhỏ nhất của hàm số: $f(x)=\sqrt{3+x}+\sqrt{6-x}-\sqrt{18+3x-x^2}$ với $-3\leq x\leq 6$.
Đề bài: Tìm giá trị lớn nhất và nhỏ nhất của hàm số: $f(x)=\sqrt{3+x}+\sqrt{6-x}-\sqrt{18+3x-x^2}$ với $-3\leq x\leq 6$. Lời giải Đề bài: Tìm giá trị lớn nhất và nhỏ nhất của hàm số: $f(x)=\sqrt{3+x}+\sqrt{6-x}-\sqrt{18+3x-x^2}$ với $-3\leq x\leq 6$. Lời giải Ta có: $18+3x-x^2=(3+x)(6-x)$Điều … [Đọc thêm...] vềĐề bài: Tìm giá trị lớn nhất và nhỏ nhất của hàm số: $f(x)=\sqrt{3+x}+\sqrt{6-x}-\sqrt{18+3x-x^2}$ với $-3\leq x\leq 6$.
Đề bài: Chứng minh bất đẳng thức:a) $\sqrt{ \cos^4a+\cos^4b}+\sin^2a+\sin^2b \geq \sqrt{ 2} $b) $\sqrt{a^2-\sqrt{ 2}ab+b^2 }+\sqrt{b^2-\sqrt{ 3}bc+c^2 } \geq \sqrt{a^2-\sqrt{ 2-\sqrt{ 3} }ac+c^2 }$
Đề bài: Chứng minh bất đẳng thức:a) $\sqrt{ \cos^4a+\cos^4b}+\sin^2a+\sin^2b \geq \sqrt{ 2} $b) $\sqrt{a^2-\sqrt{ 2}ab+b^2 }+\sqrt{b^2-\sqrt{ 3}bc+c^2 } \geq \sqrt{a^2-\sqrt{ 2-\sqrt{ 3} }ac+c^2 }$ Lời giải Đề bài: Chứng minh bất đẳng thức:a) $\sqrt{ \cos^4a+\cos^4b}+\sin^2a+\sin^2b \geq \sqrt{ 2} $b) $\sqrt{a^2-\sqrt{ 2}ab+b^2 }+\sqrt{b^2-\sqrt{ … [Đọc thêm...] vềĐề bài: Chứng minh bất đẳng thức:a) $\sqrt{ \cos^4a+\cos^4b}+\sin^2a+\sin^2b \geq \sqrt{ 2} $b) $\sqrt{a^2-\sqrt{ 2}ab+b^2 }+\sqrt{b^2-\sqrt{ 3}bc+c^2 } \geq \sqrt{a^2-\sqrt{ 2-\sqrt{ 3} }ac+c^2 }$
Đề bài: Cho ba số dương $a,b,c$ trong đó $a>c b>c$.Chứng minh rằng : $\sqrt{c(a-c)}+\sqrt{c(b-c)} \leq \sqrt{ab} (1) $.Dấu bằng khi nào xảy ra?
Đề bài: Cho ba số dương $a,b,c$ trong đó $a>c b>c$.Chứng minh rằng : $\sqrt{c(a-c)}+\sqrt{c(b-c)} \leq \sqrt{ab} (1) $.Dấu bằng khi nào xảy ra? Lời giải Đề bài: Cho ba số dương $a,b,c$ trong đó $a>c b>c$.Chứng minh rằng : $\sqrt{c(a-c)}+\sqrt{c(b-c)} \leq \sqrt{ab} (1) $.Dấu bằng khi nào xảy ra? Lời giải … [Đọc thêm...] vềĐề bài: Cho ba số dương $a,b,c$ trong đó $a>c b>c$.Chứng minh rằng : $\sqrt{c(a-c)}+\sqrt{c(b-c)} \leq \sqrt{ab} (1) $.Dấu bằng khi nào xảy ra?
Đề bài: Chứng minh bất đẳng thức SCHUR: Nếu $a,b,c>0$ và $r>0$ thì:$a^{r}(a-b)(a-c)+b^{r}(b-c)(b-a)+c^{r}(c-a)(c-b) \geq 0$
Đề bài: Chứng minh bất đẳng thức SCHUR: Nếu $a,b,c>0$ và $r>0$ thì:$a^{r}(a-b)(a-c)+b^{r}(b-c)(b-a)+c^{r}(c-a)(c-b) \geq 0$ Lời giải Đề bài: Chứng minh bất đẳng thức SCHUR: Nếu $a,b,c>0$ và $r>0$ thì:$a^{r}(a-b)(a-c)+b^{r}(b-c)(b-a)+c^{r}(c-a)(c-b) \geq 0$ Lời giải Dùng biến đổi tương … [Đọc thêm...] vềĐề bài: Chứng minh bất đẳng thức SCHUR: Nếu $a,b,c>0$ và $r>0$ thì:$a^{r}(a-b)(a-c)+b^{r}(b-c)(b-a)+c^{r}(c-a)(c-b) \geq 0$
Đề bài: Chứng minh rằng:$n^{n+3}+(n+1)^{n+3}
Đề bài: Chứng minh rằng:$n^{n+3}+(n+1)^{n+3} Lời giải Đề bài: Chứng minh rằng:$n^{n+3}+(n+1)^{n+3} Lời giải Ta có: $(\frac{n+2}{n+1})^{n+3}=(1+\frac{1}{n+1})^{n+3}$$=\sum\limits_{k=0}^{n+3} C^{k}_{n+3} 1^{n+3-k}(\frac{1}{n+1})^{k}$$=\sum\limits_{k=0}^{n+3} C^{k}_{n+3}(\frac{1}{n+1})^{k}$ … [Đọc thêm...] vềĐề bài: Chứng minh rằng:$n^{n+3}+(n+1)^{n+3}
Đề bài: Chứng minh rằng:$-\frac{1}{2}\leq \frac{(a+b)(1-ab)}{(1+a^{2})(1+b^{2})}\leq \frac{1}{2}$
Đề bài: Chứng minh rằng:$-\frac{1}{2}\leq \frac{(a+b)(1-ab)}{(1+a^{2})(1+b^{2})}\leq \frac{1}{2}$ Lời giải Đề bài: Chứng minh rằng:$-\frac{1}{2}\leq \frac{(a+b)(1-ab)}{(1+a^{2})(1+b^{2})}\leq \frac{1}{2}$ Lời giải Đặt: $\begin{cases}a=\tan \alpha \\b=\tan \beta \end{cases}(\alpha,\beta \in … [Đọc thêm...] vềĐề bài: Chứng minh rằng:$-\frac{1}{2}\leq \frac{(a+b)(1-ab)}{(1+a^{2})(1+b^{2})}\leq \frac{1}{2}$
Đề bài: Cho $1\geq n \in N,a_{i},b_{i} \in R,i=1,2,…,n$.Hãy chứng minh rằng:$(a_{1}b_{1}+a_{2}b_{2}+…+a_{n}b_{n})^{2}\leq (a_{1}^{2}+a_{2}^{2}+…+a_{n}^{2}).(b_{1}^{2}+…+b_{n}^{2})$
Đề bài: Cho $1\geq n \in N,a_{i},b_{i} \in R,i=1,2,...,n$.Hãy chứng minh rằng:$(a_{1}b_{1}+a_{2}b_{2}+...+a_{n}b_{n})^{2}\leq (a_{1}^{2}+a_{2}^{2}+...+a_{n}^{2}).(b_{1}^{2}+...+b_{n}^{2})$ Lời giải Đề bài: Cho $1\geq n \in N,a_{i},b_{i} \in R,i=1,2,...,n$.Hãy chứng minh rằng:$(a_{1}b_{1}+a_{2}b_{2}+...+a_{n}b_{n})^{2}\leq … [Đọc thêm...] vềĐề bài: Cho $1\geq n \in N,a_{i},b_{i} \in R,i=1,2,…,n$.Hãy chứng minh rằng:$(a_{1}b_{1}+a_{2}b_{2}+…+a_{n}b_{n})^{2}\leq (a_{1}^{2}+a_{2}^{2}+…+a_{n}^{2}).(b_{1}^{2}+…+b_{n}^{2})$
Đề bài: Cho $n \in N,n\geq 1,a_{1},a_{2},…,a_{n} \geq 0$ thỏa mãn :$a_{1}+a_{2}+…+a_{n} \leq \frac{1}{2}$Hãy chứng minh:$(1-a_{1}).(1-a_{2})…(1-a_{n}) \geq \frac{1}{2}$
Đề bài: Cho $n \in N,n\geq 1,a_{1},a_{2},...,a_{n} \geq 0$ thỏa mãn :$a_{1}+a_{2}+...+a_{n} \leq \frac{1}{2}$Hãy chứng minh:$(1-a_{1}).(1-a_{2})...(1-a_{n}) \geq \frac{1}{2}$ Lời giải Đề bài: Cho $n \in N,n\geq 1,a_{1},a_{2},...,a_{n} \geq 0$ thỏa mãn :$a_{1}+a_{2}+...+a_{n} \leq \frac{1}{2}$Hãy chứng minh:$(1-a_{1}).(1-a_{2})...(1-a_{n}) \geq \frac{1}{2}$ … [Đọc thêm...] vềĐề bài: Cho $n \in N,n\geq 1,a_{1},a_{2},…,a_{n} \geq 0$ thỏa mãn :$a_{1}+a_{2}+…+a_{n} \leq \frac{1}{2}$Hãy chứng minh:$(1-a_{1}).(1-a_{2})…(1-a_{n}) \geq \frac{1}{2}$
Đề bài: Cho $x,y\geq 0$ và $x^{3}+y^{3}=2.$Chứng minh rằng: $x^{2}+y^{2}\leq 2$
Đề bài: Cho $x,y\geq 0$ và $x^{3}+y^{3}=2.$Chứng minh rằng: $x^{2}+y^{2}\leq 2$ Lời giải Đề bài: Cho $x,y\geq 0$ và $x^{3}+y^{3}=2.$Chứng minh rằng: $x^{2}+y^{2}\leq 2$ Lời giải Ta có: $x^{2}+y^{2}\leq 2$$\Leftrightarrow \left ( x^{2}+y^{2} \right )^{3}\leq 8=2 \left ( x^{3}+y^{3} \right … [Đọc thêm...] vềĐề bài: Cho $x,y\geq 0$ và $x^{3}+y^{3}=2.$Chứng minh rằng: $x^{2}+y^{2}\leq 2$
