• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Toán 12
  • Toán 11
  • Toán 10
  • Trắc nghiệm
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán
Bạn đang ở:Trang chủ / Bất đẳng thức - Bài tập tự luận / Đề bài: Cho ba số dương $a,b,c$ trong đó $a>c b>c$.Chứng minh rằng : $\sqrt{c(a-c)}+\sqrt{c(b-c)} \leq  \sqrt{ab}     (1)  $.Dấu bằng khi nào xảy ra?

Đề bài: Cho ba số dương $a,b,c$ trong đó $a>c b>c$.Chứng minh rằng : $\sqrt{c(a-c)}+\sqrt{c(b-c)} \leq  \sqrt{ab}     (1)  $.Dấu bằng khi nào xảy ra?

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Các dạng bất đẳng thức khác

Đề bài: Cho ba số dương $a,b,c$ trong đó $a>c b>c$.Chứng minh rằng : $\sqrt{c(a-c)}+\sqrt{c(b-c)} \leq  \sqrt{ab}     (1)  $.Dấu bằng khi nào xảy ra?

Bat dang thuc

Lời giải

Đề bài:
Cho ba số dương $a,b,c$ trong đó $a>c b>c$.Chứng minh rằng : $\sqrt{c(a-c)}+\sqrt{c(b-c)} \leq  \sqrt{ab}     (1)  $.Dấu bằng khi nào xảy ra?
Lời giải

Xét $\overrightarrow {u}=(\sqrt{c};\sqrt{b-c}  ) ;\overrightarrow {v}=(\sqrt{a-c};\sqrt{c}  ) $
$\Rightarrow  \begin{cases}\overrightarrow {u}.\overrightarrow {v}=\sqrt{c(a-c)}+\sqrt{c(b-c)}     \\ |\overrightarrow {u} |.|\overrightarrow {v} |=\sqrt{c+b-c}.\sqrt{a-c+c}=\sqrt{b}.\sqrt{a}=\sqrt{ab}       \end{cases} $
Mà ta có : $\overrightarrow {u}.\overrightarrow {v}\leq  |\overrightarrow {u} |.|\overrightarrow {v} |\Rightarrow  \sqrt{c(a-c)}+\sqrt{c(b-c)} \leq  \sqrt{ab}    (1)$
Vì $a,b,c>0$ do đó dấu bằng xảy ra trong $(1)$
$\Leftrightarrow  \overrightarrow {u} , \overrightarrow {v} $ cùng chiều $\Leftrightarrow  \overrightarrow {u}=k\overrightarrow {v}  $ (với $k>0$)
$\Leftrightarrow  \begin{cases}\sqrt{c} =k\sqrt{a-c}  \\ \sqrt{b-c} =k\sqrt{c}  \end{cases} \Leftrightarrow  \frac{\sqrt{c} }{\sqrt{a-c} } =\frac{\sqrt{b-c} }{\sqrt{c} } \Leftrightarrow  c=\sqrt{a-c}.\sqrt{b-c}  $
$\Leftrightarrow  c^2=(a-c)(b-c)\Leftrightarrow  c^2=ab-ac-cb+c^2\Leftrightarrow  ab=c(a+b)$
$\Leftrightarrow  \frac{1}{c} =\frac{1}{a} +\frac{1}{b} $ (chia hai vế cho $a,b,c$)

Cách $2:$ Áp dụng BĐT Bunhiacopski cho 2 bộ số $(\sqrt{c};\sqrt{b-c})$ và $(\sqrt{a-c};\sqrt{c})$ ta có:
$VT=\sqrt{c}.\sqrt{a-c}+\sqrt{b-c}.\sqrt{c}\leq \sqrt{(c+b-c).(a-c+c)}=\sqrt{ab}$ (đpcm)
Dấu bằng xảy ra khi và chỉ khi:
$\Leftrightarrow  \frac{\sqrt{c} }{\sqrt{a-c} } =\frac{\sqrt{b-c} }{\sqrt{c} } \Leftrightarrow  c=\sqrt{a-c}.\sqrt{b-c}  $
$\Leftrightarrow  c^2=(a-c)(b-c)\Leftrightarrow  c^2=ab-ac-cb+c^2\Leftrightarrow  ab=c(a+b)$
$\Leftrightarrow  \frac{1}{c} =\frac{1}{a} +\frac{1}{b} $ (chia hai vế cho $a,b,c$)

=========
Chuyên mục: Các dạng bất đẳng thức khác

Bài liên quan:

  1. Đề bài: Cho $n$ số thực không âm $x_1, x_2, …, x_n$ thỏa mãn điều kiện: $x_1+x_2+…+x_n\leq  \frac{1}{2} $Chứng minh rằng : $(1-x_1)(1-x_2)…(1-x_n)\geq  \frac{1}{2} $
  2. Đề bài: Chứng minh bất đẳng thức:Nếu $a+b \geq  2$ thì $\frac{a^{n}+b^{n}}{2}\leq  \frac{a+b}{2}\frac{a^{n}+b^{n}}{2}\leq \frac{a^{n+1}+b^{n+1}}{2}  $
  3. Đề bài: Chứng minh rằng: $-(1+x^{2})^{n}\leq (1-x^{2})^{n}+(2x)^{n}\leq (1+x^{2})^{n},\forall x \in R,\forall n\in N$\$\left\{ \begin{array}{l}0,1 \end{array} \right.\left. \right \}$
  4. Đề bài: Cho $|x|\leq 1,n\in Z,n \geq 2$.Chứng minh rằng:$(1+x)^{n}+(1-x)^{n}\leq 2^{n}$
  5. Đề bài: Chứng minh rằng:$n^{n} > (n+1) ^{n-1} .\forall n \in Z,n \geq 2$
  6. Đề bài: Chứng minh rằng trong $3$ bất đẳng thức sau đây ít nhất có $1$ bất đẳng thức đúng:$2(a^{2}+b^{2})\geq(b+c)^{2};2(b^{2}+c^{2})\geq(c+a)^{2};2(c^{2}+a^{2})\geq(a+b^{2})$
  7. Đề bài: Cho $a,b,c >0, a+b=c$.Chứng minh rằng:$\sqrt[4]{a^{3}}+\sqrt[4]{b^{3}}>\sqrt[4]{c^{3}}$
  8. Đề bài: Cho $ x_1,x_2, … , x_{2008} \in [\frac{\pi}{6};\frac{\pi}{2}]$. Tìm giá trị lớn nhất của: $y=(\sin x_1+\sin x_2+ … +\sin x_{2008}).\left ( \frac{1}{\sin x_1} + \frac{1}{\sin x_2}+…+ \frac{1}{\sin x_{2008}}\right )$
  9. Đề bài: Chứng minh rằng:$-\frac{1}{4}\leq \frac{(a^{2}-b^{2})(1-a^{2}b^{2})}{[(1+a^{2})(1+b^{2})]^{2}}\leq \frac{1}{4}$
  10. Đề bài: Chứng minh rằng:$\sqrt[n]{2}\leq \sqrt[n]{1-x}+ \sqrt[n]{1+x},  \forall |x| \leq 1,n \in Z,n\geq 2$
  11. Đề bài: Chứng minh rằng: $\sqrt{1+\sqrt{1-x^{2}}} \geq \frac{x}{\sqrt{2}}.(1+2\sqrt{1-x^{2}}),\forall x \in [-1,1]$
  12. Đề bài: Cho $n \in Z,n \geq 1,a,b \geq 0$.Hãy chứng minh: $\frac{a^{n}+b^{n}}{2} \geq (\frac{a+b}{2})^{n}$Hãy tổng quát hóa bài toán trên.
  13. Đề bài: Chứng minh rằng với $a$ là số thực không âm thì:      $\sqrt{a}+\sqrt[3]{a}+\sqrt[6]{a}\leq a+2            (1)$
  14. Đề bài: Cho $0\leq a,b,c,d\leq 1$.Chứng minh rằng:$\frac{a}{bcd+1}+\frac{b}{cda+1}+\frac{c}{dab+1}+\frac{d}{abc+1}\leq 3$
  15. Đề bài: Chứng minh bất dẳng thức:a) $\sin ^{4}x+\cos ^{8}x\leq  1                                               b) \sin^{10}x+\cos^{11}x \leq \ 1$ c)$(1+x)^{n}+(1-x)^{n} \leq  2^{n}; (|x|\leq  1), n \geq   1$

Reader Interactions

Để lại một bình luận Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.