• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Trắc nghiệm Toán 12
  • Máy tính

Đề bài: Chứng minh rằng: $-(1+x^{2})^{n}\leq (1-x^{2})^{n}+(2x)^{n}\leq (1+x^{2})^{n},\forall x \in R,\forall n\in N$\$\left\{ \begin{array}{l}0,1 \end{array} \right.\left. \right \}$

Đăng ngày: 11/07/2021 Biên tập: admin Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Các dạng bất đẳng thức khác

adsense
Đề bài: Chứng minh rằng: $-(1+x^{2})^{n}\leq (1-x^{2})^{n}+(2x)^{n}\leq (1+x^{2})^{n},\forall x \in R,\forall n\in N$\$\left\{ \begin{array}{l}0,1 \end{array} \right.\left. \right \}$

Bat dang thuc

Lời giải

Đề bài:
Chứng minh rằng: $-(1+x^{2})^{n}\leq (1-x^{2})^{n}+(2x)^{n}\leq (1+x^{2})^{n},\forall x \in R,\forall n\in N$\$\left\{ \begin{array}{l}0,1 \end{array} \right.\left. \right \}$
Lời giải

adsense

BĐT cần chứng minh:
$\Leftrightarrow |(\frac{1-x^{2}}{1+x^{2}})^{n}+(\frac{2x}{1+x^{2}})^{n}|\leq 1 (1)$
Đặt:$x=\tan \frac{\alpha}{2},\alpha \in (-\pi,\pi)$
$\Rightarrow \begin{cases}\frac{1-x^{2}}{1+x^{2}}=\frac{1-\tan^{2} \frac{\alpha}{2}}{1+\tan^{2} \frac{\alpha}{2}}=cos^2\frac{\alpha}{2}-sin^2\frac{\alpha}{2}=\cos \alpha \\ \frac{2x}{1+x^{2}}= \frac{2\tan \frac{\alpha}{2}}{1+\tan^{2} \frac{\alpha}{2}}=2tan\frac{\alpha}{2}cos^2\frac{\alpha}{2}=\sin \alpha \end{cases}$
$(1)\Leftrightarrow |\sin ^{n}\alpha+\cos ^{n} \alpha|\leq 1 (2)$
Ta có:
$|\sin ^{n}\alpha+\cos ^{n} \alpha|\leq |\sin\alpha|^{n}+|\cos\alpha|^{n}$$\leq |\sin\alpha|^{2}+|\cos\alpha|^{2}=1$
( vì $n\geq 2, 0\leq |sin\alpha|, |cos\alpha|\leq 1$)
$\Rightarrow (2)$ đúng.
$\Rightarrow $(ĐPCM)

=========
Chuyên mục: Các dạng bất đẳng thức khác

Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Các dạng bất đẳng thức khác

Bài liên quan:

  1. Đề bài:  Cho $4$ số thực $a,b,c,d$ thỏa mãn điều kiện $(I) \begin{cases}2a+b=6 \\ 2c+d=2 \end{cases}$Hãy tìm giá trị nhỏ nhất của biểu thức    $U=\sqrt{(a-4)^2+(b-3)^2}+\sqrt{(a-c)^2+(b-d)^2}+\sqrt{(c+1)^2+(d+3)^2}$
  2. Đề bài: Cho ba số dương $a,b,c$ trong đó $a>c b>c$.Chứng minh rằng : $\sqrt{c(a-c)}+\sqrt{c(b-c)} \leq  \sqrt{ab}     (1)  $.Dấu bằng khi nào xảy ra?
  3. Đề bài: Chứng minh bất đẳng thức SCHUR: Nếu $a,b,c>0$ và $r>0$ thì:$a^{r}(a-b)(a-c)+b^{r}(b-c)(b-a)+c^{r}(c-a)(c-b) \geq  0$
  4. Đề bài: Chứng minh rằng:$x^{n}\geq y^{n} +(x-y)^{n},\forall x\geq y \geq 0,\forall n \in N^{*}$
  5. Đề bài: Cho $ab \neq 0$.Chứng minh rằng:$-2\sqrt{2}-2\leq \frac{a^{2}-(a-4b)^{2}}{a^{2}+4b^{2}}\leq 2\sqrt{2}-2$
  6. Đề bài: Cho $n \in N,a_{i} \geq 1,i-1,2,…,n.$Hãy chứng minh:$\frac{1}{1+a_{1}}+\frac{1}{1+a_{2}}+…+\frac{1}{1+a_{n}} \geq \frac{n}{1+\sqrt[n]{a_{1}.a_{2}…a_{n}}}$
  7. Đề bài: Cho $n \in N,n\geq 1,a_{1},a_{2},…,a_{n} \geq 0$ thỏa mãn :$a_{1}+a_{2}+…+a_{n} \leq \frac{1}{2}$Hãy chứng minh:$(1-a_{1}).(1-a_{2})…(1-a_{n}) \geq \frac{1}{2}$
  8. Đề bài: Cho $x,y\geq 0$ và $x^{3}+y^{3}=2.$Chứng minh rằng: $x^{2}+y^{2}\leq 2$
  9. Đề bài: Chứng minh rằng : $ \sum\limits_{k = 1}^n {\frac{1}{k(2k-1)} } < \ln 4 $
  10. Đề bài: Cho $n+2$  số thực dương $\alpha, \beta,a_1,a_2,…,a_n$ thỏa $\alpha \leq a_i \leq \beta, \forall i=1,2,…,n$Gọi $S_1=\frac{1}{n}(a_1+a_2+….+a_n), S_2=\frac{1}{n}(a_1^2+a_2^2+….+a_n^2)$. Chứng minh:                                                      $\frac{S_2}{S_1^2} \leq \frac{(\alpha+\beta)^2}{4\alpha.\beta}     (1)$
  11. Đề bài: Chứng minh bất đẳng thức:a)$\frac{x^{2} }{a^{2}}+\frac{y^{2} }{b^{2}}=1 \Rightarrow  \frac{1}{x^{2}}+\frac{1}{y^{2} } \geq  (\frac{1}{a}+\frac{1}{b})^{2}                     b)\sqrt{c}(\sqrt{a-c}+ \sqrt{b-c}) \leq  \sqrt{ab}     $
  12. Đề bài: Chứng minh rằng với mọi $a,b\in R$ luôn có:$\frac{a+b}{2}\times \frac{a^2+b^2}{2}\times \frac{a^3+b^3}{2}\leq \frac{a^6+b^6}{2}$
  13. Đề bài: Chứng minh rằng: $\sqrt{(1-x^{2})^{5}}+\sqrt{x^{9}}\leq 1,\forall x \in [0,1]$
  14. Đề bài: Cho $a,b,c>0$ và $a.b.c=1$Hãy chứng minh: $a+b+c \geq 3$
  15. Đề bài: Đặt: $a_{n}=\left ( 1+\frac{1}{n} \right )^{n}.n \in N^{*}$Chứng minh rằng: $a_{n+1}>a_{n}$

Reader Interactions

Trả lời Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC




Booktoan.com (2015 - 2023) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
THÔNG TIN:
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.