• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Toán 12
  • Toán 11
  • Toán 10
  • Trắc nghiệm
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán

Bất đẳng thức - Bài tập tự luận

Đề bài:  Chứng minh rằng với mọi số thực $a, b, c$ thỏa mãn điều kiện $a + b + c= 1$ thì:              $\frac{1}{3^a} + \frac{1}{3^b} + \frac{1}{3^c} \ge 3\left( {\frac{a}{3^a} + \frac{b}{3^b} + \frac{c}{3^c}} \right)$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Ứng dụng hàm số để chứng minh Bất đẳng thức

Đề bài:  Chứng minh rằng với mọi số thực $a, b, c$ thỏa mãn điều kiện $a + b + c= 1$ thì:              $\frac{1}{3^a} + \frac{1}{3^b} + \frac{1}{3^c} \ge 3\left( {\frac{a}{3^a} + \frac{b}{3^b} + \frac{c}{3^c}} \right)$ Lời giải Đề bài:  Chứng minh rằng với mọi số thực $a, b, c$ thỏa mãn điều kiện $a + b + c= 1$ thì:              $\frac{1}{3^a} + \frac{1}{3^b} … [Đọc thêm...] vềĐề bài:  Chứng minh rằng với mọi số thực $a, b, c$ thỏa mãn điều kiện $a + b + c= 1$ thì:              $\frac{1}{3^a} + \frac{1}{3^b} + \frac{1}{3^c} \ge 3\left( {\frac{a}{3^a} + \frac{b}{3^b} + \frac{c}{3^c}} \right)$

Đề bài: Tìm giá trị lớn nhất và nhỏ nhất của hàm số: $f(x)=\sqrt{3+x}+\sqrt{6-x}-\sqrt{18+3x-x^2}$ với $-3\leq x\leq 6$.

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Ứng dụng hàm số để chứng minh Bất đẳng thức

Đề bài: Tìm giá trị lớn nhất và nhỏ nhất của hàm số: $f(x)=\sqrt{3+x}+\sqrt{6-x}-\sqrt{18+3x-x^2}$ với $-3\leq x\leq 6$. Lời giải Đề bài: Tìm giá trị lớn nhất và nhỏ nhất của hàm số: $f(x)=\sqrt{3+x}+\sqrt{6-x}-\sqrt{18+3x-x^2}$ với $-3\leq x\leq 6$. Lời giải Ta có: $18+3x-x^2=(3+x)(6-x)$Điều … [Đọc thêm...] vềĐề bài: Tìm giá trị lớn nhất và nhỏ nhất của hàm số: $f(x)=\sqrt{3+x}+\sqrt{6-x}-\sqrt{18+3x-x^2}$ với $-3\leq x\leq 6$.

Đề bài: Chứng minh bất đẳng thức:a) $\sqrt{ \cos^4a+\cos^4b}+\sin^2a+\sin^2b \geq  \sqrt{ 2} $b) $\sqrt{a^2-\sqrt{ 2}ab+b^2  }+\sqrt{b^2-\sqrt{ 3}bc+c^2  } \geq  \sqrt{a^2-\sqrt{ 2-\sqrt{ 3} }ac+c^2  }$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Các dạng bất đẳng thức khác

Đề bài: Chứng minh bất đẳng thức:a) $\sqrt{ \cos^4a+\cos^4b}+\sin^2a+\sin^2b \geq  \sqrt{ 2} $b) $\sqrt{a^2-\sqrt{ 2}ab+b^2  }+\sqrt{b^2-\sqrt{ 3}bc+c^2  } \geq  \sqrt{a^2-\sqrt{ 2-\sqrt{ 3} }ac+c^2  }$ Lời giải Đề bài: Chứng minh bất đẳng thức:a) $\sqrt{ \cos^4a+\cos^4b}+\sin^2a+\sin^2b \geq  \sqrt{ 2} $b) $\sqrt{a^2-\sqrt{ 2}ab+b^2  }+\sqrt{b^2-\sqrt{ … [Đọc thêm...] vềĐề bài: Chứng minh bất đẳng thức:a) $\sqrt{ \cos^4a+\cos^4b}+\sin^2a+\sin^2b \geq  \sqrt{ 2} $b) $\sqrt{a^2-\sqrt{ 2}ab+b^2  }+\sqrt{b^2-\sqrt{ 3}bc+c^2  } \geq  \sqrt{a^2-\sqrt{ 2-\sqrt{ 3} }ac+c^2  }$

Đề bài: 1)    Chứng minh $x^2+2xy+3y^2+2x+6y+3\geq 0$ đúng với $\forall x,y$2)    Tìm $m$ để $9x^2+20y^2+4z^2-12xy+6xz+myz\geq 0$ đúng với $\forall x,y,z$3)    Giả sử $a > b > c$, chứng minh: $(x + a + b + c)^2 > 8(bx  +  ac)$ đúng với $\forall x$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Các dạng bất đẳng thức khác

Đề bài: 1)    Chứng minh $x^2+2xy+3y^2+2x+6y+3\geq 0$ đúng với $\forall x,y$2)    Tìm $m$ để $9x^2+20y^2+4z^2-12xy+6xz+myz\geq 0$ đúng với $\forall x,y,z$3)    Giả sử $a > b > c$, chứng minh: $(x + a + b + c)^2 > 8(bx  +  ac)$ đúng với $\forall x$ Lời giải Đề bài: 1)    Chứng minh $x^2+2xy+3y^2+2x+6y+3\geq 0$ đúng với $\forall x,y$2)    Tìm $m$ để … [Đọc thêm...] vềĐề bài: 1)    Chứng minh $x^2+2xy+3y^2+2x+6y+3\geq 0$ đúng với $\forall x,y$2)    Tìm $m$ để $9x^2+20y^2+4z^2-12xy+6xz+myz\geq 0$ đúng với $\forall x,y,z$3)    Giả sử $a > b > c$, chứng minh: $(x + a + b + c)^2 > 8(bx  +  ac)$ đúng với $\forall x$

Đề bài: Chứng minh nếu $a,b,c\in (0;1)$ thì có ít nhất 1 bất đẳng thức sau sai:$4a(1-b)>1; 4b(1-c)>1;4c(1-a)>1$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Các dạng bất đẳng thức khác

Đề bài: Chứng minh nếu $a,b,c\in (0;1)$ thì có ít nhất 1 bất đẳng thức sau sai:$4a(1-b)>1; 4b(1-c)>1;4c(1-a)>1$ Lời giải Đề bài: Chứng minh nếu $a,b,c\in (0;1)$ thì có ít nhất 1 bất đẳng thức sau sai:$4a(1-b)>1; 4b(1-c)>1;4c(1-a)>1$ Lời giải Dùng phản chứng và bất đẳng thức … [Đọc thêm...] vềĐề bài: Chứng minh nếu $a,b,c\in (0;1)$ thì có ít nhất 1 bất đẳng thức sau sai:$4a(1-b)>1; 4b(1-c)>1;4c(1-a)>1$

Đề bài: $\forall n\in N$\ $\left\{ \begin{array}{l} \end{array} \right.\left. 0,1 \right \},\forall a,b \geq 0$Chứng minh rằng: $|\sqrt[n]{a}-\sqrt[n]{b}|\leq \sqrt[n]{|a-b|}$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Các dạng bất đẳng thức khác

Đề bài: $\forall n\in N$\ $\left\{ \begin{array}{l} \end{array} \right.\left. 0,1 \right \},\forall a,b \geq 0$Chứng minh rằng: $|\sqrt[n]{a}-\sqrt[n]{b}|\leq \sqrt[n]{|a-b|}$ Lời giải Đề bài: $\forall n\in N$\ $\left\{ \begin{array}{l} \end{array} \right.\left. 0,1 \right \},\forall a,b \geq 0$Chứng minh rằng: … [Đọc thêm...] vềĐề bài: $\forall n\in N$\ $\left\{ \begin{array}{l} \end{array} \right.\left. 0,1 \right \},\forall a,b \geq 0$Chứng minh rằng: $|\sqrt[n]{a}-\sqrt[n]{b}|\leq \sqrt[n]{|a-b|}$

Đề bài: Chứng minh rằng:$\sqrt{(a+c)^{2}+b^{2}}+\sqrt{(a-c)^{2}+b^{2}}\geq 2\sqrt{a^{2}+b^{2}}    ;\forall a,b,c \in R$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Các dạng bất đẳng thức khác

Đề bài: Chứng minh rằng:$\sqrt{(a+c)^{2}+b^{2}}+\sqrt{(a-c)^{2}+b^{2}}\geq 2\sqrt{a^{2}+b^{2}}    ;\forall a,b,c \in R$ Lời giải Đề bài: Chứng minh rằng:$\sqrt{(a+c)^{2}+b^{2}}+\sqrt{(a-c)^{2}+b^{2}}\geq 2\sqrt{a^{2}+b^{2}}    ;\forall a,b,c \in R$ Lời giải Trong mặt phẳng $Oxy,$ chọn … [Đọc thêm...] vềĐề bài: Chứng minh rằng:$\sqrt{(a+c)^{2}+b^{2}}+\sqrt{(a-c)^{2}+b^{2}}\geq 2\sqrt{a^{2}+b^{2}}    ;\forall a,b,c \in R$

Đề bài: Cho $n \in N$.Chứng minh rằng:$e^{x} \geq 1+\frac{x}{1!}+\frac{x^{2}}{2!}+…+\frac{x^{n}}{n!},\forall x \geq 0$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Các dạng bất đẳng thức khác

Đề bài: Cho $n \in N$.Chứng minh rằng:$e^{x} \geq 1+\frac{x}{1!}+\frac{x^{2}}{2!}+...+\frac{x^{n}}{n!},\forall x \geq 0$ Lời giải Đề bài: Cho $n \in N$.Chứng minh rằng:$e^{x} \geq 1+\frac{x}{1!}+\frac{x^{2}}{2!}+...+\frac{x^{n}}{n!},\forall x \geq 0$ Lời giải *$n=0: e^{x} \geq 1,\forall x \geq … [Đọc thêm...] vềĐề bài: Cho $n \in N$.Chứng minh rằng:$e^{x} \geq 1+\frac{x}{1!}+\frac{x^{2}}{2!}+…+\frac{x^{n}}{n!},\forall x \geq 0$

Đề bài: Cho $x_1,x_2…x_n$ là $n$ số thực thuộc đoạn $[0,1]$. Chứng minh rằng ta luôn có bất đẳng thức:$x_1(1-x_2)+x_2(1-x_3)+…+x_n(1-x_1)\leq \frac{n}{2}           (1)$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Các dạng bất đẳng thức khác

Đề bài: Cho $x_1,x_2...x_n$ là $n$ số thực thuộc đoạn $[0,1]$. Chứng minh rằng ta luôn có bất đẳng thức:$x_1(1-x_2)+x_2(1-x_3)+...+x_n(1-x_1)\leq \frac{n}{2}           (1)$ Lời giải Đề bài: Cho $x_1,x_2...x_n$ là $n$ số thực thuộc đoạn $[0,1]$. Chứng minh rằng ta luôn có bất đẳng thức:$x_1(1-x_2)+x_2(1-x_3)+...+x_n(1-x_1)\leq \frac{n}{2}           (1)$ Lời … [Đọc thêm...] vềĐề bài: Cho $x_1,x_2…x_n$ là $n$ số thực thuộc đoạn $[0,1]$. Chứng minh rằng ta luôn có bất đẳng thức:$x_1(1-x_2)+x_2(1-x_3)+…+x_n(1-x_1)\leq \frac{n}{2}           (1)$

Đề bài: Cho $a+b\geq 2$.Chứng minh rằng:$a^{4}+b^{4}\geq a^{3}+b^{3}$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Các dạng bất đẳng thức khác

Đề bài: Cho $a+b\geq 2$.Chứng minh rằng:$a^{4}+b^{4}\geq a^{3}+b^{3}$ Lời giải Đề bài: Cho $a+b\geq 2$.Chứng minh rằng:$a^{4}+b^{4}\geq a^{3}+b^{3}$ Lời giải Xét hiệu: $a^{4}+b^{4}-\left ( a^{3}+b^{3}\right )$            $=a^{3}\left ( a-1 \right )+b^{3}\left ( b-1 \right )\geq  a^{3}\left ( a-1 … [Đọc thêm...] vềĐề bài: Cho $a+b\geq 2$.Chứng minh rằng:$a^{4}+b^{4}\geq a^{3}+b^{3}$

  • « Chuyển đến Trang trước
  • Trang 1
  • Interim pages omitted …
  • Trang 19
  • Trang 20
  • Trang 21
  • Trang 22
  • Trang 23
  • Interim pages omitted …
  • Trang 43
  • Chuyển đến Trang sau »

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.