• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Sách toán
  • Đề thi
  • Ôn thi THPT Quốc gia Môn Toán
  • Trắc nghiệm toán 12
  • Máy tính

Đề bài: Cho $x_1,x_2…x_n$ là $n$ số thực thuộc đoạn $[0,1]$. Chứng minh rằng ta luôn có bất đẳng thức:$x_1(1-x_2)+x_2(1-x_3)+…+x_n(1-x_1)\leq \frac{n}{2}           (1)$

Đăng ngày: 11/07/2021 Biên tập: admin Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Các dạng bất đẳng thức khác

Đề bài: Cho $x_1,x_2…x_n$ là $n$ số thực thuộc đoạn $[0,1]$. Chứng minh rằng ta luôn có bất đẳng thức:$x_1(1-x_2)+x_2(1-x_3)+…+x_n(1-x_1)\leq \frac{n}{2}           (1)$

Bat dang thuc

Lời giải

Đề bài:
Cho $x_1,x_2…x_n$ là $n$ số thực thuộc đoạn $[0,1]$. Chứng minh rằng ta luôn có bất đẳng thức:$x_1(1-x_2)+x_2(1-x_3)+…+x_n(1-x_1)\leq \frac{n}{2}           (1)$
Lời giải

Ta xét các trường hợp:

*Trường hợp 1: nếu $n=2k, k\in N^{*}$, thì $(1)$  được chuyển về dạng:
$x_1(1-x_2)+x_2(1-x_3)+…+x_{2k}(1-x_1)\leq k.    (2) $
Nhận xét rằng với $a,b\in [0,1]$, ta luôn có:
$(1-a)(1-b)\geq 0\Leftrightarrow a+b\leq 1+ab$
Suy ra: \begin{cases}x_1+x_2\leq 1+x_1x_2 \\ x_2+x_3\leq 1+x_2x_3 \\… \\x_{2k}+x_1\leq 1+x_{2k}x_1\end{cases}
Cộng vế với vế bất đẳng thức  trên ta được:
$\displaystyle x_1+x_2+…+x_{2k}\leq k+\frac{x_1x_2+x_2x_3+…+x_{2k}x_1}{2}\leq k+x_1x_2+x_2x_3+…+x_{2k}x_1$
$\Leftrightarrow x_1(1-x_2)+x_2(1-x_3)+…+x_{2k}(1-x_1)\leq k$.
Dấu = xảy ra $\Leftrightarrow 
\displaystyle  \frac{x_1x_2+x_2x_3+…+x_{2k}x_1}{2}=x_1x_2+x_2x_3+…+x_{2k}x_1 \Leftrightarrow \exists $ (2k-1) số trong 2k số $x_1; x_2;\ldots;x_{2k}$ bằng $0$.

*Trường hợp 2 : Nếu $n=2k+1, k\in N$ thì $(1)$ được chuyển về dạng:
         $
\displaystyle x_1(1-x_2)+x_2(1-x_3)+…+x_{2k+1}(1-x_1)\leq \frac{2k+1}{2}$
         $
\displaystyle \Leftrightarrow \frac{2k+1}{2}+x_1x_2+x_2x_3+x_3x_4+…+x_{2k+1}x_1\geq x_1+x_2+…+x_{2k+1}      (3)$
Ta chứng minh $(3)$ tương tự như trường hợp $n=2k$, suy ra:
               $
\displaystyle x_1(1-x_2)+x_2(1-x_3)+…+x_{2k}(1-x_1)\leq \frac{2k+1}{2}=\frac{n}{2}$
Dấu = xảy ra $\Leftrightarrow 
\exists $ $2k$ số trong 2k+1 số $x_1; x_2;\ldots;x_{2k+1}$ bằng $0$.
Ta có đpcm. 

=========
Chuyên mục: Các dạng bất đẳng thức khác

Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Các dạng bất đẳng thức khác

Bài liên quan:

  1. Đề bài: Chứng minh bất đẳng thức:a) $\sqrt{x^2-2x+5 }+\sqrt{ x^2+2x+10}  \geq \sqrt{ 5} $b) $\sqrt{(a-b)^2+c^2 }+\sqrt{(a+b)^2+c^2 } \geq  2\sqrt{ a^2+c^2} $
  2. Đề bài: 1)    Tìm a để bất phương trình sau đúng với $\forall x \in [- 2;4 ]:$$ – 4\sqrt {( 4 – x )( x + 2} )  \le x^2 – 2x  +  a  –  18 $            (1)2) Tìm a và b để bất đẳng thức sau đúng với $\forall x$ $| cos2x + acosx + b – 1| \le 1$      (2)
  3. Đề bài: Tìm: $\mathop {\lim }\limits_{n \to +\infty }\frac{a^{n}}{n^{\alpha}} (a,\alpha >0)$(Để ý:với $x\in R,|x|$ là ký hiệu phần nguyên của $x$,là số nguyên lớn nhất không vượt quá $x$)
  4. Đề bài: Chứng minh rằng:$1\sqrt{C^{1}_{n}}+2\sqrt{C^{2}_{n}}+…+n\sqrt{C^{n}_{n}}
  5. Đề bài: Đặt: $x_{n}=\underbrace {\sqrt{2+\sqrt{2+…+\sqrt{2}}}}_{n}$Chứng minh rằng: $x_{n}
  6. Đề bài: Cho $n \in N,n \geq 1,a_{i}>0,i=1,2,…,n$.Hãy chứng minh:$(a_{1}+a_{2}+…+a_{n}).(\frac{1}{a_{1}}+\frac{1}{a_{2}}+…+\frac{1}{a_{n}}) \geq n^{2}$
  7. Đề bài: Chứng minh rằng với $a$ là số thực không âm thì:      $\sqrt{a}+\sqrt[3]{a}+\sqrt[6]{a}\leq a+2            (1)$
  8. Đề bài: $a/$Chứng minh rằng:$\left ( x+ y\right )^{2}-xy+1\geq \left ( x +y\right )\sqrt{3},\forall x,y$$b/$Cho $\triangle ABC$.Chứng minh rằng: $\tan \frac{A}{2}+\tan \frac{B}{2}+\tan \frac{C}{2}\geq \sqrt{3}$
  9. Đề bài: Chứng minh bất đẳng thức:a) $\sqrt{ \cos^4a+\cos^4b}+\sin^2a+\sin^2b \geq  \sqrt{ 2} $b) $\sqrt{a^2-\sqrt{ 2}ab+b^2  }+\sqrt{b^2-\sqrt{ 3}bc+c^2  } \geq  \sqrt{a^2-\sqrt{ 2-\sqrt{ 3} }ac+c^2  }$
  10. Đề bài: 1)    Chứng minh $x^2+2xy+3y^2+2x+6y+3\geq 0$ đúng với $\forall x,y$2)    Tìm $m$ để $9x^2+20y^2+4z^2-12xy+6xz+myz\geq 0$ đúng với $\forall x,y,z$3)    Giả sử $a > b > c$, chứng minh: $(x + a + b + c)^2 > 8(bx  +  ac)$ đúng với $\forall x$
  11. Đề bài: Chứng minh nếu $a,b,c\in (0;1)$ thì có ít nhất 1 bất đẳng thức sau sai:$4a(1-b)>1; 4b(1-c)>1;4c(1-a)>1$
  12. Đề bài: $\forall n\in N$\ $\left\{ \begin{array}{l} \end{array} \right.\left. 0,1 \right \},\forall a,b \geq 0$Chứng minh rằng: $|\sqrt[n]{a}-\sqrt[n]{b}|\leq \sqrt[n]{|a-b|}$
  13. Đề bài: Chứng minh rằng:$\sqrt{(a+c)^{2}+b^{2}}+\sqrt{(a-c)^{2}+b^{2}}\geq 2\sqrt{a^{2}+b^{2}}    ;\forall a,b,c \in R$
  14. Đề bài: Cho $n \in N$.Chứng minh rằng:$e^{x} \geq 1+\frac{x}{1!}+\frac{x^{2}}{2!}+…+\frac{x^{n}}{n!},\forall x \geq 0$
  15. Đề bài: Chứng minh rằng với $n$ nguyên dương, ta có:       $(1+2^2)(1+2^{2^{2}})(1+2^{2^{3}})\times …\times (1+2^{2^{n}})

Reader Interactions

Trả lời Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC




Booktoan.com (2015 - 2022) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
THÔNG TIN:
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.