• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Trắc nghiệm Toán 12
  • Máy tính

Đề bài: 1)    Chứng minh $x^2+2xy+3y^2+2x+6y+3\geq 0$ đúng với $\forall x,y$2)    Tìm $m$ để $9x^2+20y^2+4z^2-12xy+6xz+myz\geq 0$ đúng với $\forall x,y,z$3)    Giả sử $a > b > c$, chứng minh: $(x + a + b + c)^2 > 8(bx  +  ac)$ đúng với $\forall x$

Đăng ngày: 11/07/2021 Biên tập: admin Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Các dạng bất đẳng thức khác

Đề bài: 1)    Chứng minh $x^2+2xy+3y^2+2x+6y+3\geq 0$ đúng với $\forall x,y$2)    Tìm $m$ để $9x^2+20y^2+4z^2-12xy+6xz+myz\geq 0$ đúng với $\forall x,y,z$3)    Giả sử $a > b > c$, chứng minh: $(x + a + b + c)^2 > 8(bx  +  ac)$ đúng với $\forall x$

Bat dang thuc

Lời giải

Đề bài:
1)    Chứng minh $x^2+2xy+3y^2+2x+6y+3\geq 0$ đúng với $\forall x,y$2)    Tìm $m$ để $9x^2+20y^2+4z^2-12xy+6xz+myz\geq 0$ đúng với $\forall x,y,z$3)    Giả sử $a > b > c$, chứng minh: $(x + a + b + c)^2 > 8(bx  +  ac)$ đúng với $\forall x$
Lời giải

Nhắc lại : Tam thức bậc hai $ f(t)=At^2+Bt+C $ với hệ số $A >0$ thì biệt thức $\Delta \le 0\Leftrightarrow f(t) \ge 0  \forall t$.
1)    BĐT $ \Leftrightarrow {x^2} + 2{\rm{x(y  +  1) + 3(y  +  1}}{{\rm{)}}^{\rm{2}}} \ge 0$                (1)
Coi VT (1) là bậc hai đối với x, ta xét:
${\Delta ^’} = {\left( {y + 1} \right)^2} – 3{\left( {y + 1} \right)^2} =  – 2{\left( {y + 1} \right)^2} \le 0$ với $\forall y$
$ \Rightarrow (1)$ đúng với $\forall x,y$ (đpcm)
2)    BĐT $ \Leftrightarrow 9{{\rm{x}}^{\rm{2}}} + 6{\rm{x}}\left( {{\rm{z  –  2y}}} \right) + 20{y^2} + 4{{\rm{z}}^{\rm{2}}} + myz \ge 0$
$ \Leftrightarrow {\Delta ^’} = 9{\left( {z – 2y} \right)^2} – 9\left( {20{y^2} + 4{{\rm{z}}^{\rm{2}}} + myz} \right) \le 0$ với $\forall y,z,m$
$ \Leftrightarrow  – 144{y^2} – 9yz(m + 4) – 27{{\rm{z}}^{\rm{2}}} \le 0$  với $\forall y,z,m$
$ \Leftrightarrow   144{y^2} + 9yz(m + 4) + 27{{\rm{z}}^{\rm{2}}} \ge 0$  với $\forall y,z,m$
$ \Leftrightarrow \delta  = 81{{\rm{z}}^{\rm{2}}}.{\left( {m + 4} \right)^2} – 4.144.27{{\rm{z}}^{\rm{2}}} \le 0$  với $\forall m,z$
    $ \Leftrightarrow 81{{\rm{z}}^{\rm{2}}}\left[ {{{\left( {m + 4} \right)}^2} – 192} \right] \le 0$ với $\forall m,z$
    $ \Leftrightarrow {\left( {m + 4} \right)^2} – 192 \le 0 \Leftrightarrow \left| {m + 4} \right| \le 8\sqrt 3 $
    $ \Leftrightarrow  – 4 – 8\sqrt 3  \le m \le  – 4 + 8\sqrt 3 $
3)    Ta phải chứng minh
${x^2} + 2{\rm{x(a  +  c  –  3b)  +  ( a  +  b  +  c }}{{\rm{)}}^{\rm{2}}} – 8{\rm{ac  >  0 , }}\forall {\rm{x}}$      (2)
Vì ${\Delta ^’} = {\left( {a + c – 3b} \right)^2} – {(a + b + c)^2} + 8{\rm{ac}}$
    $ = 8({b^2} – ab – bc + ac)=8(a-b)(c-b).$
Do  $a > b > c$ nên $ \Delta ^’ Vậy (2) đúng(đpcm)

=========
Chuyên mục: Các dạng bất đẳng thức khác

Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Các dạng bất đẳng thức khác

Bài liên quan:

  1. Đề bài: Chứng minh bất dẳng thức:a) $\sin ^{4}x+\cos ^{8}x\leq  1                                               b) \sin^{10}x+\cos^{11}x \leq \ 1$ c)$(1+x)^{n}+(1-x)^{n} \leq  2^{n}; (|x|\leq  1), n \geq   1$
  2. Đề bài: Cho :  $y  =  \sqrt {a\cos^2 {x} + b\sin^2 {x} + c}  + \sqrt {a\sin^2 {x} + b\cos^2 {x} + c}  + m\sin x\cos x$a)    Tìm điều kiện của $a, b, c$ để $y$ có nghĩa với $\forall x$.b)    Với điều kiện ấy hãy tìm $max \,y$, biện luận theo $m$
  3. Đề bài: Tìm: $\mathop {\lim }\limits_{n \to +\infty }\frac{a^{n}}{n^{\alpha}} (a,\alpha >0)$(Để ý:với $x\in R,|x|$ là ký hiệu phần nguyên của $x$,là số nguyên lớn nhất không vượt quá $x$)
  4. Đề bài: Chứng minh rằng:$1\sqrt{C^{1}_{n}}+2\sqrt{C^{2}_{n}}+…+n\sqrt{C^{n}_{n}}
  5. Đề bài: Đặt: $x_{n}=\underbrace {\sqrt{2+\sqrt{2+…+\sqrt{2}}}}_{n}$Chứng minh rằng: $x_{n}
  6. Đề bài: Cho $n \in N,n \geq 1,a_{i}>0,i=1,2,…,n$.Hãy chứng minh:$(a_{1}+a_{2}+…+a_{n}).(\frac{1}{a_{1}}+\frac{1}{a_{2}}+…+\frac{1}{a_{n}}) \geq n^{2}$
  7. Đề bài: Chứng minh rằng với $n$ nguyên dương, ta có:       $(1+2^2)(1+2^{2^{2}})(1+2^{2^{3}})\times …\times (1+2^{2^{n}})
  8. Đề bài: $a/$Chứng minh rằng:$\left ( x+ y\right )^{2}-xy+1\geq \left ( x +y\right )\sqrt{3},\forall x,y$$b/$Cho $\triangle ABC$.Chứng minh rằng: $\tan \frac{A}{2}+\tan \frac{B}{2}+\tan \frac{C}{2}\geq \sqrt{3}$
  9. Đề bài: Chứng minh bất đẳng thức:a) $\sqrt{x^2-2x+5 }+\sqrt{ x^2+2x+10}  \geq \sqrt{ 5} $b) $\sqrt{(a-b)^2+c^2 }+\sqrt{(a+b)^2+c^2 } \geq  2\sqrt{ a^2+c^2} $
  10. Đề bài: 1)    Tìm a để bất phương trình sau đúng với $\forall x \in [- 2;4 ]:$$ – 4\sqrt {( 4 – x )( x + 2} )  \le x^2 – 2x  +  a  –  18 $            (1)2) Tìm a và b để bất đẳng thức sau đúng với $\forall x$ $| cos2x + acosx + b – 1| \le 1$      (2)
  11. Đề bài: Chứng minh nếu $a,b,c\in (0;1)$ thì có ít nhất 1 bất đẳng thức sau sai:$4a(1-b)>1; 4b(1-c)>1;4c(1-a)>1$
  12. Đề bài: $\forall n\in N$\ $\left\{ \begin{array}{l} \end{array} \right.\left. 0,1 \right \},\forall a,b \geq 0$Chứng minh rằng: $|\sqrt[n]{a}-\sqrt[n]{b}|\leq \sqrt[n]{|a-b|}$
  13. Đề bài: Chứng minh rằng:$\sqrt{(a+c)^{2}+b^{2}}+\sqrt{(a-c)^{2}+b^{2}}\geq 2\sqrt{a^{2}+b^{2}}    ;\forall a,b,c \in R$
  14. Đề bài: Cho $n \in N$.Chứng minh rằng:$e^{x} \geq 1+\frac{x}{1!}+\frac{x^{2}}{2!}+…+\frac{x^{n}}{n!},\forall x \geq 0$
  15. Đề bài: Cho $x_1,x_2…x_n$ là $n$ số thực thuộc đoạn $[0,1]$. Chứng minh rằng ta luôn có bất đẳng thức:$x_1(1-x_2)+x_2(1-x_3)+…+x_n(1-x_1)\leq \frac{n}{2}           (1)$

Reader Interactions

Trả lời Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC




Booktoan.com (2015 - 2023) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
THÔNG TIN:
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.