• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Trắc nghiệm Toán 12
  • Máy tính

Đề bài: 1)    Với $x \in [ – 1;1] $,   chứng minh $\sqrt[4]{2} < \sqrt[4]{{1 - x}} + \sqrt[4]{{1 + x}} \le 2$2)    Tìm miền giá trị của   $y=\sin^{2n}x+\cos^{2n}x$ với $n\in Z^+$ 3)    Chứng minh:   $4^{|\sin x|} + 2^{|\cos x|} \ge 3$

Đăng ngày: 11/07/2021 Biên tập: admin Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức Côsi

adsense
Đề bài: 1)    Với $x \in [ – 1;1] $,   chứng minh $\sqrt[4]{2} < \sqrt[4]{{1 - x}} + \sqrt[4]{{1 + x}} \le 2$2)    Tìm miền giá trị của   $y=\sin^{2n}x+\cos^{2n}x$ với $n\in Z^+$ 3)    Chứng minh:   $4^{|\sin x|} + 2^{|\cos x|} \ge 3$

Bat dang thuc

Lời giải

Đề bài:
1)    Với $x \in [ – 1;1] $,   chứng minh $\sqrt[4]{2} < \sqrt[4]{{1 - x}} + \sqrt[4]{{1 + x}} \le 2$2)    Tìm miền giá trị của   $y=\sin^{2n}x+\cos^{2n}x$ với $n\in Z^+$ 3)    Chứng minh:   $4^{|\sin x|} + 2^{|\cos x|} \ge 3$
Lời giải

adsense

1)  Xét hàm số : $y = \sqrt[4]{{1 – x}} + \sqrt[4]{{1 + x}}$ với $x \in {\rm{[ – 1;1]}}$
${y^’} =  – \frac{1}{4}{(1 – x)^{ – 3/4}} + \frac{1}{4}{(1 + x)^{ – 3/4}} = \frac{1}{4}\left[ {\frac{1}{{\sqrt[4]{{(1 + x)^3}}}} – \frac{1}{{\sqrt[4]{{{{(1 – x)}^3}}}}}} \right]$
${y^’} = 0$ khi $1 + x = 1 – x \Rightarrow x = 0$
Bảng biến thiên của y
Từ bảng này suy ra  $y(-1)=y(1) \le y(x) \le y(0)$
tức là  $\sqrt[4]{2} \le y = \sqrt[4]{{1 + x}} + \sqrt[4]{{1 – x}} \le 2$
2) $y = {\left( {{{\sin }^2}x} \right)^n} + {(1 – {\sin ^2}x)^n}.$ Đặt ${\sin ^2}x = t \in {\rm{[0,1]}}$
$ \Rightarrow y(t) = {t^n} + {(1 – t)^n}$ với $t \in {\rm{[0,1]}}$
${y^’} =n[t^{n-1}-(1-t)^{n-1}],  {y^’} = 0$ khi $t = \frac{1}{2}$
Bảng biến thiên
Từ bảng này suy ra  $y(0)=y(1) \ge y(t) \ge y(\frac{1}{2})$
tức là  $1 \ge y(t) \ge \frac{1}{2^{n-1}}$
Vậy miền giá trị của y là $\left[ {\frac{{\rm{1}}}{{{{\rm{2}}^{{\rm{n – 1}}}}}},1} \right]$
3) Chú ý rằng với  $ 0 \le |\sin x|, |\cos x| \le 1$ thì $ \sin^2 x \le |\sin x|, \cos^2 x| \le |\cos x| $.
Ta có ${4^{|{\mathop{\rm s}\nolimits} {\rm{inx|}}}} + {2^{|c{\rm{osx|}}}} \ge {4^{{{\sin }^2}x}} + {2^{c{\rm{o}}{{\rm{s}}^{\rm{2}}}x}} = $
$ = {4^{1 – c{\rm{o}}{{\rm{s}}^{\rm{2}}}{\rm{x}}}} + {2^{c{\rm{o}}{{\rm{s}}^{\rm{2}}}x}} = \frac{4}{{{4^{c{\rm{o}}{{\rm{s}}^{\rm{2}}}x}}}} + \frac{{{2^{c{\rm{o}}{{\rm{s}}^{\rm{2}}}{\rm{x}}}}}}{{\rm{2}}} + \frac{{{2^{c{\rm{o}}{{\rm{s}}^{\rm{2}}}x}}}}{2}  $$ \underbrace {\ge}_{Cô-si}  $ 3 ( ĐPCM)

=========
Chuyên mục: Bất đẳng thức Côsi

Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức Côsi

Bài liên quan:

  1. Đề bài: Cho $x,y,z$ là ba số dương và $x+y+z=1$.Chứng minh : $\sqrt{1-x}+\sqrt{1-y}+\sqrt{1-z}\leq \sqrt{6}$.
  2. Đề bài: Cho $x,y,z>0$ và $x+y+z=\frac{3}{4}$.Chứng minh rằng: $\sqrt[3]{x+3y}+\sqrt[3]{y+3z}+\sqrt[3]{z+3x}\leq 3$.
  3. Đề bài: Cho \(a,b>0\). Chứng minh rằng: \((a^{3}+b^{3})(\frac{1}{a}+\frac{1}{b})\geq (a+b)^{2}\).
  4. Đề bài: Chứng minh rằng: $C^{0}_{n}+C^{1}_{n}.n+C^{2}_{n}.n^{2}+…+C^{n}_{n}.n^{n}\geq 2^{n}.n!$ với $\forall n \in Z,n\geq 2$
  5. Đề bài: Cho ba số $a,b,c$ thỏa mãn $a\geq 1,b\geq 1,c\geq 1$. Chứng minh rằng:     $\sqrt{(a+1)(b-1)}+\sqrt{(b+1)(c-1)}+\sqrt{(c+1)(a-1)}
  6. Đề bài: Chứng minh rằng: $ab+bc+ca-abc\leq \frac{8}{27}$.Trong đó $a,b,c$ là các số thực không âm thỏa mãn $a+b+c=1$.
  7. Đề bài: Với  $a, b, c$ là $3$ số thực bất kỳ thỏa mãn điều kiện $a+b+c = 0$. Chứng minh rằng:                             \({8^a} + {8^b} + {8^c} \ge {2^a} + {2^b} + {2^c}\)
  8. Đề bài: Cho $x,y,z>0$ và $x+y+z\geq 3$.Chứng minh : $ \frac{x}{\sqrt{y}}+\frac{y}{\sqrt{z}}+\frac{z}{\sqrt{x}}\geq 3$.
  9. Đề bài: Cho $-1\leq x\leq 1$. Chứng minh : $S=\sqrt[4]{1-x^2}+\sqrt[4]{1-x}+\sqrt[4]{1+x}\leq 3$.
  10. Đề bài: Chứng minh rằng: \((1+a)(1+b)(1+c)\geq (1+\sqrt[3]{abc})^{3}\) với \(a,b,c\geq 0\).
  11. Đề bài: $1) $Chứng minh: $\forall a,\,b\, > 0;\,a,b \ne 1$ ta có $\left| {{{\log }_a}b + {{\log }_b}a} \right| \ge 2$$2)$Chứng minh:$\frac{1}{{{{\log }_2}\pi }} + \frac{1}{{{{\log }_{\frac{9}{2}}}\pi }} < 2$
  12. Đề bài: Cho các số dương $a,b,c$ thỏa mãn $abc=1$. chứng minh rằng:            $\frac{a^3}{(1+b)(1+c)}+\frac{b^3}{(1+a)(1+c)}+\frac{c^3}{(1+a)(1+b)}\geq \frac{3}{4}$
  13. Đề bài: Cho $a,b,c$ là $3$ cạnh $\triangle ABC$.Chứng minh rằng:$a) \frac{a}{b+c-a}+\frac{b}{c+a-b}+\frac{c}{a+b-c} \geq 3$$b) \frac{1}{a}+\frac{1}{b}+\frac{1}{c} \geq \sqrt{\frac{3}{2Rr}}$(Với $R,r$ là bán kính đường tròn ngoại,nội tiếp $\triangle ABC$ tương ứng)
  14. Đề bài: Chứng minh rằng với mọi số dương $a, b, c$ ta luôn có bất đẳng thức:                 \(\frac{1}{{{a^3} + {b^3} + abc}} + \frac{1}{{{b^3} + {c^3} + abc}} + \frac{1}{{{c^3} + {a^3} + abc}} \le \frac{1}{{abc}}\)
  15. Đề bài: Cho ba số không âm $x,y,z$ và thoả mãn điều kiện $x+y+z=1$.Chứng minh $x^3+y^3+z^3\geq \frac{1}{9}$.

Reader Interactions

Trả lời Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC




Booktoan.com (2015 - 2023) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
THÔNG TIN:
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.