• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Toán 12
  • Toán 11
  • Toán 10
  • Trắc nghiệm
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán

(Sở Hà Tĩnh 2022) Cho \(f(x)\) là hàm đa thức bậc bốn và có đổ thị như hình vẽ. Hình phắng gióri hạn bởi đổ thị hai hàm số \(y = f(x)\); \(y = f\prime (x)\) có diện tích bằng

Ngày 13/06/2022 Thuộc chủ đề:Trắc nghiệm Ứng dụng Tích phân Tag với:tich phan nang cao, Trắc nghiệm ứng dụng tích phân diện tích hình phẳng, VDC Toan 2022

Câu hỏi: (Sở Hà Tĩnh 2022) Cho \(f(x)\) là hàm đa thức bậc bốn và có đổ thị như hình vẽ. Hình phắng gióri hạn bởi đổ thị hai hàm số \(y = f(x)\); \(y = f\prime (x)\) có diện tích bằng A. \(\frac{{127}}{{40}}\). B. \(\frac{{107}}{5}\). C. \(\frac{{87}}{{40}}\). D. \(\frac{{127}}{{10}}\). Lời giải: Ta có \(f(x) = k{(x + 2)^2}{(x - 1)^2};f( - 1) = 1 … [Đọc thêm...] về

(Sở Hà Tĩnh 2022) Cho \(f(x)\) là hàm đa thức bậc bốn và có đổ thị như hình vẽ. Hình phắng gióri hạn bởi đổ thị hai hàm số \(y = f(x)\); \(y = f\prime (x)\) có diện tích bằng

(Sở Ninh Bình 2022) Diện tích hình phẳng giới hạn bởi parabol \(y = {x^2} + 2x + 1\) và đường thẳng \(y = \) \((m + 1)x + 5\) có giá trị nhỏ nhất bằng

Ngày 13/06/2022 Thuộc chủ đề:Trắc nghiệm Ứng dụng Tích phân Tag với:tich phan nang cao, Trắc nghiệm ứng dụng tích phân diện tích hình phẳng, VDC Toan 2022

Câu hỏi: (Sở Ninh Bình 2022) Diện tích hình phẳng giới hạn bởi parabol \(y = {x^2} + 2x + 1\) và đường thẳng \(y = \) \((m + 1)x + 5\) có giá trị nhỏ nhất bằng A. \(\frac{{16}}{3}\). B. \(\frac{{48}}{3}\). C. \(\frac{{64}}{3}\). D. \(\frac{{32}}{3}\). Lời giải:. Phương trình hoành độ giao điểm \({x^2} + 2x + 1 = (m + 1)x + 5 \Leftrightarrow {x^2} + … [Đọc thêm...] về

(Sở Ninh Bình 2022) Diện tích hình phẳng giới hạn bởi parabol \(y = {x^2} + 2x + 1\) và đường thẳng \(y = \) \((m + 1)x + 5\) có giá trị nhỏ nhất bằng

(THPT Lương Thế Vinh – Hà Nội -2022) Gọi \(S\) là tập các số nguyên \(m \in [ – 2022;2022]\) để phương trình \(\log _2^2x – {\log _{\sqrt 2 }}x = m – \sqrt {m + {{\log }_2}x} \) có đúng ba nghiệm phân biệt. Số phần tử của \(S\) là

Ngày 13/06/2022 Thuộc chủ đề:Trắc nghiệm Logarit và hàm số lôgarit Tag với:Trắc nghiệm HS mũ VDC 2022, Trắc nghiệm Logarit VDC 2022, VDC Toan 2022

Câu hỏi: (THPT Lương Thế Vinh – Hà Nội -2022) Gọi \(S\) là tập các số nguyên \(m \in [ - 2022;2022]\) để phương trình \(\log _2^2x - {\log _{\sqrt 2 }}x = m - \sqrt {m + {{\log }_2}x} \) có đúng ba nghiệm phân biệt. Số phần tử của \(S\) là A. 1. B. 2. C. 2021. D. 2022. Lời giải: Đặt \(t = \sqrt {m + {{\log }_2}x} ,(t \ge 0) \Rightarrow m = {t^2} - … [Đọc thêm...] về

(THPT Lương Thế Vinh – Hà Nội -2022) Gọi \(S\) là tập các số nguyên \(m \in [ – 2022;2022]\) để phương trình \(\log _2^2x – {\log _{\sqrt 2 }}x = m – \sqrt {m + {{\log }_2}x} \) có đúng ba nghiệm phân biệt. Số phần tử của \(S\) là

(THPT Nguyễn Tất Thành-Đh-SP-HN-2022) Cho \(x,y,z \in \left[ {0;2} \right]\) và thỏa mãn \(x + 2y + z = 6\). Tìm giá trị lớn nhất của biểu thức \(P = {3^{2x – {x^2}}} + {5^{2y – {y^2}}} + {3^z} + 2{x^2} + 4{y^2}\)

Ngày 13/06/2022 Thuộc chủ đề:Trắc nghiệm Logarit và hàm số lôgarit Tag với:Trắc nghiệm HS mũ VDC 2022, Trắc nghiệm Logarit VDC 2022, VDC Toan 2022

Câu hỏi: (THPT Nguyễn Tất Thành-Đh-SP-HN-2022) Cho \(x,y,z \in \left[ {0;2} \right]\) và thỏa mãn \(x + 2y + z = 6\). Tìm giá trị lớn nhất của biểu thức \(P = {3^{2x - {x^2}}} + {5^{2y - {y^2}}} + {3^z} + 2{x^2} + 4{y^2}\) A. \(\max P = 25\). B.\(\max P = 27\). C.\(\max P = 26\). D.\(\max P = 30\). Lời giải: Chọn B Xét hàm số \(f\left( t \right) = … [Đọc thêm...] về

(THPT Nguyễn Tất Thành-Đh-SP-HN-2022) Cho \(x,y,z \in \left[ {0;2} \right]\) và thỏa mãn \(x + 2y + z = 6\). Tìm giá trị lớn nhất của biểu thức \(P = {3^{2x – {x^2}}} + {5^{2y – {y^2}}} + {3^z} + 2{x^2} + 4{y^2}\)

(Sở Thái Nguyên 2022) Cho \(x,y > 0;x + 3y > 0\) thỏa mãn \(2022\left( {{{\log }_2}\sqrt {\frac{{{x^2} + {y^2}}}{{x + 3y}}} – 1} \right) \le \sqrt {x + 3y} – \sqrt {\frac{{{x^2} + {y^2}}}{4}} \). Tổng của giá trị lớn nhất và giá trị nhỏ nhất của biểu thức \(P = {x^2} + {y^2} – 14x – 2y + 2022\) bằng

Ngày 13/06/2022 Thuộc chủ đề:Trắc nghiệm Logarit và hàm số lôgarit Tag với:Trắc nghiệm HS mũ VDC 2022, Trắc nghiệm Logarit VDC 2022, VDC Toan 2022

Câu hỏi: (Sở Thái Nguyên 2022) Cho \(x,y > 0;x + 3y > 0\) thỏa mãn \(2022\left( {{{\log }_2}\sqrt {\frac{{{x^2} + {y^2}}}{{x + 3y}}} - 1} \right) \le \sqrt {x + 3y} - \sqrt {\frac{{{x^2} + {y^2}}}{4}} \). Tổng của giá trị lớn nhất và giá trị nhỏ nhất của biểu thức \(P = {x^2} + {y^2} - 14x - 2y + 2022\) bằng A. \(4124\) B. \(4042\). C. \(4044\) D. … [Đọc thêm...] về

(Sở Thái Nguyên 2022) Cho \(x,y > 0;x + 3y > 0\) thỏa mãn \(2022\left( {{{\log }_2}\sqrt {\frac{{{x^2} + {y^2}}}{{x + 3y}}} – 1} \right) \le \sqrt {x + 3y} – \sqrt {\frac{{{x^2} + {y^2}}}{4}} \). Tổng của giá trị lớn nhất và giá trị nhỏ nhất của biểu thức \(P = {x^2} + {y^2} – 14x – 2y + 2022\) bằng

(THPT Lương Thế Vinh – Hà Nội – 2022) Có bao nhiêu cặp số nguyên \((a;b)\), trong đó \(a,b \in [1;2022]\) thỏa mãn \({\left( {\frac{{2a}}{{a + {2^b}}}} \right)^{{2^b}}} \ge {\left( {\frac{{a + {2^b}}}{{{2^{b + 1}}}}} \right)^a}\) ?

Ngày 13/06/2022 Thuộc chủ đề:Trắc nghiệm Logarit và hàm số lôgarit Tag với:Trắc nghiệm HS mũ VDC 2022, Trắc nghiệm Logarit VDC 2022, VDC Toan 2022

Câu hỏi: (THPT Lương Thế Vinh – Hà Nội – 2022) Có bao nhiêu cặp số nguyên \((a;b)\), trong đó \(a,b \in [1;2022]\) thỏa mãn \({\left( {\frac{{2a}}{{a + {2^b}}}} \right)^{{2^b}}} \ge {\left( {\frac{{a + {2^b}}}{{{2^{b + 1}}}}} \right)^a}\) ? A. 5. B. \(9.\) C. 10. D. 11. Lời giải: Đặt \(x = {2^b},(x > 0) \Rightarrow {\left( {\frac{{2a}}{{a + x}}} … [Đọc thêm...] về

(THPT Lương Thế Vinh – Hà Nội – 2022) Có bao nhiêu cặp số nguyên \((a;b)\), trong đó \(a,b \in [1;2022]\) thỏa mãn \({\left( {\frac{{2a}}{{a + {2^b}}}} \right)^{{2^b}}} \ge {\left( {\frac{{a + {2^b}}}{{{2^{b + 1}}}}} \right)^a}\) ?

(Đại học Hồng Đức – 2022) Cho \(x\) là số nguyên dương và \(y\) là số thự

C. Có tất cả bao nhiêu cặp số \((x;y)\) thỏa mãn \(\ln (1 + x + 2y) = 2y + 3x – 10?\)\(\)

Ngày 13/06/2022 Thuộc chủ đề:Trắc nghiệm Logarit và hàm số lôgarit Tag với:Trắc nghiệm HS mũ VDC 2022, Trắc nghiệm Logarit VDC 2022, VDC Toan 2022

Câu hỏi: (Đại học Hồng Đức – 2022) Cho \(x\) là số nguyên dương và \(y\) là số thự C. Có tất cả bao nhiêu cặp số \((x;y)\) thỏa mãn \(\ln (1 + x + 2y) = 2y + 3x - 10?\)\(\) A. \(10.\) B. Vô số. C. 11. D. 9. Lời giải:. Điều kiện: \(1 + x + 2y > 0 \Leftrightarrow y > - \frac{{x + 1}}{2}\). Ta luôn chứng minh được \({e^x} \ge x + 1,\forall x … [Đọc thêm...] về

(Đại học Hồng Đức – 2022) Cho \(x\) là số nguyên dương và \(y\) là số thự

C. Có tất cả bao nhiêu cặp số \((x;y)\) thỏa mãn \(\ln (1 + x + 2y) = 2y + 3x – 10?\)\(\)

(THPT Nguyễn Tất Thành-Đh-SP-HN-2022) Cho hàm số \(f\left( x \right)\) có đạo hàm \(f’\left( x \right)\) liên tục trên \(\mathbb{R}\) và thỏa mãn các điều kiện \(f\left( x \right) > 0{\rm{ }}\forall x \in \mathbb{R}\)\(f\left( 0 \right) = 1\) và \(f’\left( x \right) = – 4{x^3}{\left( {f\left( x \right)} \right)^2}{\rm{ }}\forall x \in \mathbb{R}\). Tính \(I = \int\limits_0^1 {{x^3}.f} \left( x \right){\rm{d}}x\).

Ngày 13/06/2022 Thuộc chủ đề:Trắc nghiệm Ứng dụng Tích phân Tag với:tich phan nang cao, Trắc nghiệm ứng dụng tích phân diện tích hình phẳng, VDC Toan 2022

Câu hỏi: (THPT Nguyễn Tất Thành-Đh-SP-HN-2022) Cho hàm số \(f\left( x \right)\) có đạo hàm \(f'\left( x \right)\) liên tục trên \(\mathbb{R}\) và thỏa mãn các điều kiện \(f\left( x \right) > 0{\rm{ }}\forall x \in \mathbb{R}\)\(f\left( 0 \right) = 1\) và \(f'\left( x \right) = - 4{x^3}{\left( {f\left( x \right)} \right)^2}{\rm{ }}\forall x \in \mathbb{R}\). Tính \(I = … [Đọc thêm...] về

(THPT Nguyễn Tất Thành-Đh-SP-HN-2022) Cho hàm số \(f\left( x \right)\) có đạo hàm \(f’\left( x \right)\) liên tục trên \(\mathbb{R}\) và thỏa mãn các điều kiện \(f\left( x \right) > 0{\rm{ }}\forall x \in \mathbb{R}\)\(f\left( 0 \right) = 1\) và \(f’\left( x \right) = – 4{x^3}{\left( {f\left( x \right)} \right)^2}{\rm{ }}\forall x \in \mathbb{R}\). Tính \(I = \int\limits_0^1 {{x^3}.f} \left( x \right){\rm{d}}x\).

(THPT Lê Thánh Tông – HCM-2022) Số nghiệm nguyên của bất phương trình \(\left( {{3^x} + {3^{6 – x}} – 246} \right)\sqrt {5 – \ln \left( {x + 3} \right)} \ge 0\) là

Ngày 13/06/2022 Thuộc chủ đề:Trắc nghiệm Logarit và hàm số lôgarit Tag với:Trắc nghiệm HS mũ VDC 2022, Trắc nghiệm Logarit VDC 2022, VDC Toan 2022

Câu hỏi: (THPT Lê Thánh Tông - HCM-2022) Số nghiệm nguyên của bất phương trình \(\left( {{3^x} + {3^{6 - x}} - 246} \right)\sqrt {5 - \ln \left( {x + 3} \right)} \ge 0\) là A. 144. B. 145. C. 146. D. 147. Lời giải: Chọn B Điều kiện: \(\left\{ \begin{array}{l}x + 3 > 0\\5 - \ln \left( {x + 3} \right) \ge 0\end{array} \right. \Leftrightarrow … [Đọc thêm...] về

(THPT Lê Thánh Tông – HCM-2022) Số nghiệm nguyên của bất phương trình \(\left( {{3^x} + {3^{6 – x}} – 246} \right)\sqrt {5 – \ln \left( {x + 3} \right)} \ge 0\) là

(Chuyên Vinh – 2022) Cho hàm số \(y = f(x)\) có đạo hàm trên đoạn \([1;2]\) thỏa mãn \(f(1) = 2,f(2) = 1\) và \(\int_1^2 {{{\left[ {xf\prime (x)} \right]}^2}} \;dx = 2\). Tich phân \(\int_1^2 {{x^2}} f(x)dx\) bằng

Ngày 13/06/2022 Thuộc chủ đề:Trắc nghiệm Ứng dụng Tích phân Tag với:tich phan nang cao, Trắc nghiệm ứng dụng tích phân diện tích hình phẳng, VDC Toan 2022

Câu hỏi: (Chuyên Vinh – 2022) Cho hàm số \(y = f(x)\) có đạo hàm trên đoạn \([1;2]\) thỏa mãn \(f(1) = 2,f(2) = 1\) và \(\int_1^2 {{{\left[ {xf\prime (x)} \right]}^2}} \;dx = 2\). Tich phân \(\int_1^2 {{x^2}} f(x)dx\) bằng A. 4. B. 2. C. 1. D. 3. Lời giải: Chọn \(\underline {\bf{D}} \) Ta có: \(\int_1^2 {\frac{4}{{{x^2}}}} \;dx = - \left. … [Đọc thêm...] về

(Chuyên Vinh – 2022) Cho hàm số \(y = f(x)\) có đạo hàm trên đoạn \([1;2]\) thỏa mãn \(f(1) = 2,f(2) = 1\) và \(\int_1^2 {{{\left[ {xf\prime (x)} \right]}^2}} \;dx = 2\). Tich phân \(\int_1^2 {{x^2}} f(x)dx\) bằng

  • « Chuyển đến Trang trước
  • Trang 1
  • Interim pages omitted …
  • Trang 616
  • Trang 617
  • Trang 618
  • Trang 619
  • Trang 620
  • Interim pages omitted …
  • Trang 1758
  • Chuyển đến Trang sau »

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.