• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Toán 12
  • Toán 11
  • Toán 10
  • Trắc nghiệm
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán

(Cụm Trường Nghệ An – 2022) Cho hai hàm số \(f\left( x \right)\) và \(g\left( x \right)\) liên tục trên \(\mathbb{R}\) và hàm số \(f’\left( x \right) = a{x^3} + b{x^2} + cx + d\), \(g’\left( x \right) = q{x^2} + nx + p\) với \(a,q \ne 0\) có đồ thị như hình vẽ. Biết diện tích hình phẳng giới hạn bởi hai đồ thị hàm số \(y = f’\left( x \right)\) và \(y = g’\left( x \right)\) bằng \(10\) và \(f\left( 2 \right) = g\left( 2 \right)\). Biết diện tích hình phẳng giới hạn bởi hai đồ thị hàm số \(y = f\left( x \right)\) và \(y = g\left( x \right)\) bằng \(\frac{a}{b}\) (với \(a,b \in \mathbb{N}\) và \(a,b\) nguyên tố cùng nhau). Tính \(a – b\).

Ngày 14/06/2022 Thuộc chủ đề:Trắc nghiệm Ứng dụng Tích phân Tag với:tich phan nang cao, Trắc nghiệm ứng dụng tích phân diện tích hình phẳng, VDC Toan 2022

Câu hỏi: (Cụm Trường Nghệ An - 2022) Cho hai hàm số \(f\left( x \right)\) và \(g\left( x \right)\) liên tục trên \(\mathbb{R}\) và hàm số \(f'\left( x \right) = a{x^3} + b{x^2} + cx + d\), \(g'\left( x \right) = q{x^2} + nx + p\) với \(a,q \ne 0\) có đồ thị như hình vẽ. Biết diện tích hình phẳng giới hạn bởi hai đồ thị hàm số \(y = f'\left( x \right)\) và \(y = g'\left( x … [Đọc thêm...] về

(Cụm Trường Nghệ An – 2022) Cho hai hàm số \(f\left( x \right)\) và \(g\left( x \right)\) liên tục trên \(\mathbb{R}\) và hàm số \(f’\left( x \right) = a{x^3} + b{x^2} + cx + d\), \(g’\left( x \right) = q{x^2} + nx + p\) với \(a,q \ne 0\) có đồ thị như hình vẽ. Biết diện tích hình phẳng giới hạn bởi hai đồ thị hàm số \(y = f’\left( x \right)\) và \(y = g’\left( x \right)\) bằng \(10\) và \(f\left( 2 \right) = g\left( 2 \right)\). Biết diện tích hình phẳng giới hạn bởi hai đồ thị hàm số \(y = f\left( x \right)\) và \(y = g\left( x \right)\) bằng \(\frac{a}{b}\) (với \(a,b \in \mathbb{N}\) và \(a,b\) nguyên tố cùng nhau). Tính \(a – b\).

(THPT Lương Tài 2 – Bắc Ninh – 2022) Cho hàm số \(f\left( x \right) = {x^3} + b{x^2} + cx + d\) với \(b,c,d\) là các số thự

C. Biết hàm số \(g\left( x \right) = f\left( x \right) + 2f’\left( x \right) + 3f”\left( x \right)\) có hai giá trị cực trị là \( – 6\) và \(42\). Tính diện tích hình phẳng giới hạn bởi các đường \(y = \frac{{f\left( x \right) + f’\left( x \right) + f”\left( x \right)}}{{g\left( x \right) + 18}}\) và \(y = 1\).

Ngày 13/06/2022 Thuộc chủ đề:Trắc nghiệm Ứng dụng Tích phân Tag với:tich phan nang cao, Trắc nghiệm ứng dụng tích phân diện tích hình phẳng, VDC Toan 2022

Câu hỏi: (THPT Lương Tài 2 - Bắc Ninh - 2022) Cho hàm số \(f\left( x \right) = {x^3} + b{x^2} + cx + d\) với \(b,c,d\) là các số thự C. Biết hàm số \(g\left( x \right) = f\left( x \right) + 2f'\left( x \right) + 3f''\left( x \right)\) có hai giá trị cực trị là \( - 6\) và \(42\). Tính diện tích hình phẳng giới hạn bởi các đường \(y = \frac{{f\left( x \right) + f'\left( … [Đọc thêm...] về

(THPT Lương Tài 2 – Bắc Ninh – 2022) Cho hàm số \(f\left( x \right) = {x^3} + b{x^2} + cx + d\) với \(b,c,d\) là các số thự

C. Biết hàm số \(g\left( x \right) = f\left( x \right) + 2f’\left( x \right) + 3f”\left( x \right)\) có hai giá trị cực trị là \( – 6\) và \(42\). Tính diện tích hình phẳng giới hạn bởi các đường \(y = \frac{{f\left( x \right) + f’\left( x \right) + f”\left( x \right)}}{{g\left( x \right) + 18}}\) và \(y = 1\).

THI THỬ TOÁN TN THPT – CUM ĐÔNG TRIỀU QN 21 22 NHÓM GV TOÁN VN – FILE WORD

Ngày 13/06/2022 Thuộc chủ đề:Đề thi toán Tag với:De thi TN THPT Toan 2022, De thi toan 2022

THI THỬ TOÁN TN THPT - CUM ĐÔNG TRIỀU QN 21 22 NHÓM GV TOÁN VN ================ ĐỀ THI TOAN DỰA THEO PHẦN PHÁT TRIỂN THEO ĐỀ THAM KHẢO TOÁN CỦA BỘ GDDT 2022 CÓ LỜI GIẢI CHI TIẾT - FILE WORD ========== booktoan.com chia sẻ đến các bạn Bộ đề PHÁT TRIỂN THEO ĐÊ MÔN TOÁN năm 2022. Đề có đáp án chi tiết giúp các bạn đối chiếu, tham khảo để đánh giá năng lực bản thân. Chúc các … [Đọc thêm...] vềTHI THỬ TOÁN TN THPT – CUM ĐÔNG TRIỀU QN 21 22 NHÓM GV TOÁN VN – FILE WORD

(THPT Hồ Nghinh – Quảng Nam – 2022) Cho hàm số \(f(x)\) nhận giá trị dương và có đạo hàm liên tục trên đoạn \([0;1]\) sao cho \(f(1) = 1\) và \(f(x) \cdot f(1 – x) = {e^{{x^2} – x}},\forall x \in [0;1].\) Tính \(I = \int_0^1 {\frac{{\left( {2{x^3} – 3{x^2}} \right)f\prime (x)}}{{f(x)}}} dx.\)

Ngày 13/06/2022 Thuộc chủ đề:Trắc nghiệm Ứng dụng Tích phân Tag với:tich phan nang cao, Trắc nghiệm ứng dụng tích phân diện tích hình phẳng, VDC Toan 2022

Câu hỏi: (THPT Hồ Nghinh – Quảng Nam – 2022) Cho hàm số \(f(x)\) nhận giá trị dương và có đạo hàm liên tục trên đoạn \([0;1]\) sao cho \(f(1) = 1\) và \(f(x) \cdot f(1 - x) = {e^{{x^2} - x}},\forall x \in [0;1].\) Tính \(I = \int_0^1 {\frac{{\left( {2{x^3} - 3{x^2}} \right)f\prime (x)}}{{f(x)}}} dx.\) A. \(I = - \frac{1}{{10}}.\) B. \(I = \frac{2}{5}\). C. \(I … [Đọc thêm...] về

(THPT Hồ Nghinh – Quảng Nam – 2022) Cho hàm số \(f(x)\) nhận giá trị dương và có đạo hàm liên tục trên đoạn \([0;1]\) sao cho \(f(1) = 1\) và \(f(x) \cdot f(1 – x) = {e^{{x^2} – x}},\forall x \in [0;1].\) Tính \(I = \int_0^1 {\frac{{\left( {2{x^3} – 3{x^2}} \right)f\prime (x)}}{{f(x)}}} dx.\)

(THPT Lê Thánh Tông – HCM-2022) Cho hai hàm đa thức \(f\left( x \right) = a{x^3} + b{x^2} + cx + d\) và \(g\left( x \right) = m{x^2} + nx + p\). Biết rằng đồ thị hai

hàm số \(y = f\left( x \right)\) và \(y = g\left( x \right)\) cắt nhau tại ba điểm có hoành độ lần lượt là \( – 1;2;4\) đồng thời cắt trục tung lần lượt tại \(M,N\)sao cho \(MN = 6\)( tham khảo hình vẽ).

Diagram
Description automatically generated

Hình phẳng giới hạn bởi đồ thị hai hàm số đã cho ( phần gạch sọc) có diện tích bằng

Ngày 13/06/2022 Thuộc chủ đề:Trắc nghiệm Ứng dụng Tích phân Tag với:tich phan nang cao, Trắc nghiệm ứng dụng tích phân diện tích hình phẳng, VDC Toan 2022

Câu hỏi: (THPT Lê Thánh Tông - HCM-2022) Cho hai hàm đa thức \(f\left( x \right) = a{x^3} + b{x^2} + cx + d\) và \(g\left( x \right) = m{x^2} + nx + p\). Biết rằng đồ thị hai hàm số \(y = f\left( x \right)\) và \(y = g\left( x \right)\) cắt nhau tại ba điểm có hoành độ lần lượt là \( - 1;2;4\) đồng thời cắt trục tung lần lượt tại \(M,N\)sao cho \(MN = 6\)( tham khảo … [Đọc thêm...] về

(THPT Lê Thánh Tông – HCM-2022) Cho hai hàm đa thức \(f\left( x \right) = a{x^3} + b{x^2} + cx + d\) và \(g\left( x \right) = m{x^2} + nx + p\). Biết rằng đồ thị hai

hàm số \(y = f\left( x \right)\) và \(y = g\left( x \right)\) cắt nhau tại ba điểm có hoành độ lần lượt là \( – 1;2;4\) đồng thời cắt trục tung lần lượt tại \(M,N\)sao cho \(MN = 6\)( tham khảo hình vẽ).

Diagram
Description automatically generated

Hình phẳng giới hạn bởi đồ thị hai hàm số đã cho ( phần gạch sọc) có diện tích bằng

(Sở Hà Tĩnh 2022) Cho đường cong \((C):y = {x^3} + kx + 2\) và parabol \(P:y = – {x^2} + 2\) tạo thành hai miền phẳng có diện tích \({S_1},{S_2}\) như hình vẽ bên.

Biết rằng \({S_1} = \frac{8}{3}\), giá trị của \({S_2}\) bằng

Ngày 13/06/2022 Thuộc chủ đề:Trắc nghiệm Ứng dụng Tích phân Tag với:tich phan nang cao, Trắc nghiệm ứng dụng tích phân diện tích hình phẳng, VDC Toan 2022

Câu hỏi: (Sở Hà Tĩnh 2022) Cho đường cong \((C):y = {x^3} + kx + 2\) và parabol \(P:y = - {x^2} + 2\) tạo thành hai miền phẳng có diện tích \({S_1},{S_2}\) như hình vẽ bên. Biết rằng \({S_1} = \frac{8}{3}\), giá trị của \({S_2}\) bằng A. \(\frac{1}{2}\). B. \(\frac{1}{4}\). C. \(\frac{3}{4}\). D. \(\frac{5}{{12}}\). Lời giải:. Phương trình hoành … [Đọc thêm...] về

(Sở Hà Tĩnh 2022) Cho đường cong \((C):y = {x^3} + kx + 2\) và parabol \(P:y = – {x^2} + 2\) tạo thành hai miền phẳng có diện tích \({S_1},{S_2}\) như hình vẽ bên.

Biết rằng \({S_1} = \frac{8}{3}\), giá trị của \({S_2}\) bằng

(Sở Phú Thọ 2022) Cho hàm số \(y = f\left( x \right)\) liên tục trên \(R\backslash \left\{ { – 2;0} \right\}\) thỏa mãn \(x\left( {x + 2} \right).f’\left( x \right) + 2f\left( x \right) = {x^2} + 2x\) và \(f\left( 1 \right) = – 6\ln 3\). Biết \(f\left( 3 \right) = a + b\ln 5\,\left( {a,b \in \mathbb{Q}} \right)\). Giá trị \(a – b\) bằng?

Ngày 13/06/2022 Thuộc chủ đề:Trắc nghiệm Ứng dụng Tích phân Tag với:tich phan nang cao, Trắc nghiệm ứng dụng tích phân diện tích hình phẳng, VDC Toan 2022

Câu hỏi: (Sở Phú Thọ 2022) Cho hàm số \(y = f\left( x \right)\) liên tục trên \(R\backslash \left\{ { - 2;0} \right\}\) thỏa mãn \(x\left( {x + 2} \right).f'\left( x \right) + 2f\left( x \right) = {x^2} + 2x\) và \(f\left( 1 \right) = - 6\ln 3\). Biết \(f\left( 3 \right) = a + b\ln 5\,\left( {a,b \in \mathbb{Q}} \right)\). Giá trị \(a - b\) bằng? A. \(20\). B. … [Đọc thêm...] về

(Sở Phú Thọ 2022) Cho hàm số \(y = f\left( x \right)\) liên tục trên \(R\backslash \left\{ { – 2;0} \right\}\) thỏa mãn \(x\left( {x + 2} \right).f’\left( x \right) + 2f\left( x \right) = {x^2} + 2x\) và \(f\left( 1 \right) = – 6\ln 3\). Biết \(f\left( 3 \right) = a + b\ln 5\,\left( {a,b \in \mathbb{Q}} \right)\). Giá trị \(a – b\) bằng?

(Liên trường Hà Tĩnh – 2022) Cho hàm số \(f(x)\) thỏa mãn \(\left\{ {\begin{array}{*{20}{c}}{{e^{3x}}\left( {4f(x) + f\prime (x)} \right) = 2\sqrt {f(x)} }\\{f(x) > 0}\end{array},\forall x \ge 0} \right.\) và \(f(0) = 1\). Tính \(I = \int_0^{\ln 2} f (x)dx\)

Ngày 13/06/2022 Thuộc chủ đề:Trắc nghiệm Ứng dụng Tích phân Tag với:tich phan nang cao, Trắc nghiệm ứng dụng tích phân diện tích hình phẳng, VDC Toan 2022

Câu hỏi: (Liên trường Hà Tĩnh – 2022) Cho hàm số \(f(x)\) thỏa mãn \(\left\{ {\begin{array}{*{20}{c}}{{e^{3x}}\left( {4f(x) + f\prime (x)} \right) = 2\sqrt {f(x)} }\\{f(x) > 0}\end{array},\forall x \ge 0} \right.\) và \(f(0) = 1\). Tính \(I = \int_0^{\ln 2} f (x)dx\) A. \(I = \frac{{11}}{{24}}.\) B. \(I = - \frac{1}{{12}}\). C. \(I = … [Đọc thêm...] về

(Liên trường Hà Tĩnh – 2022) Cho hàm số \(f(x)\) thỏa mãn \(\left\{ {\begin{array}{*{20}{c}}{{e^{3x}}\left( {4f(x) + f\prime (x)} \right) = 2\sqrt {f(x)} }\\{f(x) > 0}\end{array},\forall x \ge 0} \right.\) và \(f(0) = 1\). Tính \(I = \int_0^{\ln 2} f (x)dx\)

(Chuyên Lê Quý Đôn – Điện Biên – 2022) Cho hàm số \(f\left( x \right)\) thoả mãn \(f\left( 2 \right) = – \frac{1}{{25}}\) và \(f’\left( x \right) = 4{x^3}{\left[ {f\left( x \right)} \right]^2}\) vói mọi \(x \in \mathbb{R}\). Giá trị của \(f\left( 1 \right) – f\left( 0 \right)\) bằng

Ngày 13/06/2022 Thuộc chủ đề:Trắc nghiệm Ứng dụng Tích phân Tag với:tich phan nang cao, Trắc nghiệm ứng dụng tích phân diện tích hình phẳng, VDC Toan 2022

Câu hỏi: (Chuyên Lê Quý Đôn - Điện Biên - 2022) Cho hàm số \(f\left( x \right)\) thoả mãn \(f\left( 2 \right) = - \frac{1}{{25}}\) và \(f'\left( x \right) = 4{x^3}{\left[ {f\left( x \right)} \right]^2}\) vói mọi \(x \in \mathbb{R}\). Giá trị của \(f\left( 1 \right) - f\left( 0 \right)\) bằng A. \(\frac{1}{{90}}\). B. \( - \frac{1}{{90}}\). C. \( - … [Đọc thêm...] về

(Chuyên Lê Quý Đôn – Điện Biên – 2022) Cho hàm số \(f\left( x \right)\) thoả mãn \(f\left( 2 \right) = – \frac{1}{{25}}\) và \(f’\left( x \right) = 4{x^3}{\left[ {f\left( x \right)} \right]^2}\) vói mọi \(x \in \mathbb{R}\). Giá trị của \(f\left( 1 \right) – f\left( 0 \right)\) bằng

(THPT Lương Tài 2 – Bắc Ninh – 2022) Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) có đồ thị như hình vẽ. Giả sử diện tích phần kẻ sọc trên hình vẽ có diện tích bằng \(a\). Tính theo \(a\) giá trị của tích phân \(I = \int\limits_{ – 3}^2 {\left( {2x + 1} \right)} f’\left( x \right)dx\)?

Diagram, histogram
Description automatically generated

Ngày 13/06/2022 Thuộc chủ đề:Trắc nghiệm Ứng dụng Tích phân Tag với:tich phan nang cao, Trắc nghiệm ứng dụng tích phân diện tích hình phẳng, VDC Toan 2022

Câu hỏi: (THPT Lương Tài 2 - Bắc Ninh - 2022) Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) có đồ thị như hình vẽ. Giả sử diện tích phần kẻ sọc trên hình vẽ có diện tích bằng \(a\). Tính theo \(a\) giá trị của tích phân \(I = \int\limits_{ - 3}^2 {\left( {2x + 1} \right)} f'\left( x \right)dx\)? A. \(I = 50 - 2a\). B. \(I = 50 - a\). C. … [Đọc thêm...] về

(THPT Lương Tài 2 – Bắc Ninh – 2022) Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) có đồ thị như hình vẽ. Giả sử diện tích phần kẻ sọc trên hình vẽ có diện tích bằng \(a\). Tính theo \(a\) giá trị của tích phân \(I = \int\limits_{ – 3}^2 {\left( {2x + 1} \right)} f’\left( x \right)dx\)?

Diagram, histogram
Description automatically generated

  • « Chuyển đến Trang trước
  • Trang 1
  • Interim pages omitted …
  • Trang 615
  • Trang 616
  • Trang 617
  • Trang 618
  • Trang 619
  • Interim pages omitted …
  • Trang 1758
  • Chuyển đến Trang sau »

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.