Câu hỏi:
(THPT Yên Lạc - Vĩnh Phúc - 2022) Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\left( {0; + \infty } \right)\) thỏa mãn \(2x.f'\left( x \right) + f\left( x \right) = 3{x^2}\sqrt x ,\forall x \in \left( {0; + \infty } \right)\). Biết \(f\left( 1 \right) = \frac{1}{2}\), tính \(f\left( 4 \right)\).
A. \(14\).
B. \(4\).
C. \(24\).
D. … [Đọc thêm...] về (THPT Yên Lạc – Vĩnh Phúc – 2022) Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\left( {0; + \infty } \right)\) thỏa mãn \(2x.f’\left( x \right) + f\left( x \right) = 3{x^2}\sqrt x ,\forall x \in \left( {0; + \infty } \right)\). Biết \(f\left( 1 \right) = \frac{1}{2}\), tính \(f\left( 4 \right)\).
(THPT Lương Thế Vinh – Hà Nội – 2022) \(\int_0^4 {\min } \{ 2x + 1,x + 2, – 3x + 14\} dx{\rm{ }}\)bằng
Câu hỏi:
(THPT Lương Thế Vinh – Hà Nội – 2022) \(\int_0^4 {\min } \{ 2x + 1,x + 2, - 3x + 14\} dx{\rm{ }}\)bằng
A. \(\frac{{31}}{2}\).
B. 30.
C. \(\frac{{27}}{2}\).
D. 36.
Lời giải:
Xét \(2x + 1 = x + 2 \Leftrightarrow x = 1;x + 2 = - 3x + 14 \Leftrightarrow x = 3; - 3x + 14 = 2x + 1 \Leftrightarrow x = \frac{{13}}{5}\).
Vẽ đồ thị của ba hàm số … [Đọc thêm...] về (THPT Lương Thế Vinh – Hà Nội – 2022) \(\int_0^4 {\min } \{ 2x + 1,x + 2, – 3x + 14\} dx{\rm{ }}\)bằng
(Sở Bạc Liêu 2022) Cho hàm số \(y = f\left( x \right) = \left\{ \begin{array}{l}{e^x} + 1\,\,\,\,\,\,\,\,\,\,\,{\,^{}}\,{\mathop{\rm khi}\nolimits} \,x \ge 0\\{x^2} – 2x + 2{\,^{}}{\mathop{\rm khi}\nolimits} \,x < 0\end{array} \right.\). Tích phân \(I = \int\limits_{\frac{1}{e}}^{{e^2}} {\frac{{f\left( {\ln x – 1} \right)}}{x}{\rm{d}}x} = \frac{a}{b} + ce\) biết \(a,b,c \in \mathbb{Z}\) và \(\frac{a}{b}\) tối giản. Tính \(a + b + c?\)
Câu hỏi:
(Sở Bạc Liêu 2022) Cho hàm số \(y = f\left( x \right) = \left\{ \begin{array}{l}{e^x} + 1\,\,\,\,\,\,\,\,\,\,\,{\,^{}}\,{\mathop{\rm khi}\nolimits} \,x \ge 0\\{x^2} - 2x + 2{\,^{}}{\mathop{\rm khi}\nolimits} \,x < 0\end{array} \right.\). Tích phân \(I = \int\limits_{\frac{1}{e}}^{{e^2}} {\frac{{f\left( {\ln x - 1} \right)}}{x}{\rm{d}}x} = \frac{a}{b} + ce\) … [Đọc thêm...] về (Sở Bạc Liêu 2022) Cho hàm số \(y = f\left( x \right) = \left\{ \begin{array}{l}{e^x} + 1\,\,\,\,\,\,\,\,\,\,\,{\,^{}}\,{\mathop{\rm khi}\nolimits} \,x \ge 0\\{x^2} – 2x + 2{\,^{}}{\mathop{\rm khi}\nolimits} \,x < 0\end{array} \right.\). Tích phân \(I = \int\limits_{\frac{1}{e}}^{{e^2}} {\frac{{f\left( {\ln x – 1} \right)}}{x}{\rm{d}}x} = \frac{a}{b} + ce\) biết \(a,b,c \in \mathbb{Z}\) và \(\frac{a}{b}\) tối giản. Tính \(a + b + c?\)
(THPT Hương Sơn – Hà Tĩnh – 2022) Một biển quảng cáo có dạng hình tròn tâm \(O\), phía trong được trang trí bởi hình chữ nhật \(ABCD\); hình vuông \(MNPQ\) có cạnh \(MN = 2m\) và hai đường parabol đối xứng nhau chung đỉnh \(O\) như hình vẽ. Biết chi phí để sơn phần tô đậm là 300.000 đồng/m2 và phần còn lại là 250.000 đồng/m2. Hỏi số tiền để sơn theo cách trên gần nhất với số tiền nào dưới đây?
Câu hỏi: (THPT Hương Sơn - Hà Tĩnh - 2022) Một biển quảng cáo có dạng hình tròn tâm \(O\), phía trong được trang trí bởi hình chữ nhật \(ABCD\); hình vuông \(MNPQ\) có cạnh \(MN = 2m\) và hai đường parabol đối xứng nhau chung đỉnh \(O\) như hình vẽ. Biết chi phí để sơn phần tô đậm là 300.000 đồng/m2 và phần còn lại là 250.000 đồng/m2. Hỏi số tiền để sơn theo cách trên gần … [Đọc thêm...] về(THPT Hương Sơn – Hà Tĩnh – 2022) Một biển quảng cáo có dạng hình tròn tâm \(O\), phía trong được trang trí bởi hình chữ nhật \(ABCD\); hình vuông \(MNPQ\) có cạnh \(MN = 2m\) và hai đường parabol đối xứng nhau chung đỉnh \(O\) như hình vẽ. Biết chi phí để sơn phần tô đậm là 300.000 đồng/m2 và phần còn lại là 250.000 đồng/m2. Hỏi số tiền để sơn theo cách trên gần nhất với số tiền nào dưới đây?
(Sở Hà Tĩnh 2022) Cho \(F\left( x \right)\) là nguyên hàm của \(f\left( x \right) = {\sin ^2}x\) trên \(\mathbb{R}\) thoả mãn \(F\left( {\frac{\pi }{4}} \right) = 0\). Giá trị biểu thức \(S = F\left( { – \pi } \right) + 2F\left( {\frac{\pi }{2}} \right)\) bằng
Câu hỏi:
(Sở Hà Tĩnh 2022) Cho \(F\left( x \right)\) là nguyên hàm của \(f\left( x \right) = {\sin ^2}x\) trên \(\mathbb{R}\) thoả mãn \(F\left( {\frac{\pi }{4}} \right) = 0\). Giá trị biểu thức \(S = F\left( { - \pi } \right) + 2F\left( {\frac{\pi }{2}} \right)\) bằng
A. \(S = \frac{3}{4} - \frac{\pi }{4}\).
B. \(S = \frac{3}{4} - \frac{{3\pi }}{4}\).
C. \(S = … [Đọc thêm...] về (Sở Hà Tĩnh 2022) Cho \(F\left( x \right)\) là nguyên hàm của \(f\left( x \right) = {\sin ^2}x\) trên \(\mathbb{R}\) thoả mãn \(F\left( {\frac{\pi }{4}} \right) = 0\). Giá trị biểu thức \(S = F\left( { – \pi } \right) + 2F\left( {\frac{\pi }{2}} \right)\) bằng
(Chuyên Lam Sơn 2022) Cho hàm số \(y = f(x)\) có đạo hàm liên tục trên \((0;\pi )\) thỏa mãn \(f\prime (x) = f(x)\). \(\cot x + 2x\). \(\sin x\). Biết \(f\left( {\frac{\pi }{2}} \right) = \frac{{{\pi ^2}}}{4}\). Tính \(f\left( {\frac{\pi }{6}} \right)\).
Câu hỏi:
(Chuyên Lam Sơn 2022) Cho hàm số \(y = f(x)\) có đạo hàm liên tục trên \((0;\pi )\) thỏa mãn \(f\prime (x) = f(x)\). \(\cot x + 2x\). \(\sin x\). Biết \(f\left( {\frac{\pi }{2}} \right) = \frac{{{\pi ^2}}}{4}\). Tính \(f\left( {\frac{\pi }{6}} \right)\).
A. \(\frac{{{\pi ^2}}}{{36}}\).
B. \(\frac{{{\pi ^2}}}{{72}}\).
C. \(\frac{{{\pi … [Đọc thêm...] về (Chuyên Lam Sơn 2022) Cho hàm số \(y = f(x)\) có đạo hàm liên tục trên \((0;\pi )\) thỏa mãn \(f\prime (x) = f(x)\). \(\cot x + 2x\). \(\sin x\). Biết \(f\left( {\frac{\pi }{2}} \right) = \frac{{{\pi ^2}}}{4}\). Tính \(f\left( {\frac{\pi }{6}} \right)\).
(Chuyên Nguyễn Trãi – Hải Dương – 2022) Cho hàm số \(y = f(x)\) có đồ thị \((C),f(x)\) có đạo hàm xác định và liên tục trên khoảng \((0; + \infty )\) thỏa mãn điều kiện \(f\prime (x) = \ln x \cdot {f^2}(x),\forall x \in (0; + \infty )\). Biết \(f(x) \ne 0,\forall x \in (0; + \infty )\) và \(f(e) = 2\). Viết phương trình tiếp tuyến với đồ thị \((C)\) tại điểm có hoành độ \(x = 1\).
Câu hỏi:
(Chuyên Nguyễn Trãi – Hải Dương – 2022) Cho hàm số \(y = f(x)\) có đồ thị \((C),f(x)\) có đạo hàm xác định và liên tục trên khoảng \((0; + \infty )\) thỏa mãn điều kiện \(f\prime (x) = \ln x \cdot {f^2}(x),\forall x \in (0; + \infty )\). Biết \(f(x) \ne 0,\forall x \in (0; + \infty )\) và \(f(e) = 2\). Viết phương trình tiếp tuyến với đồ thị \((C)\) tại điểm có … [Đọc thêm...] về (Chuyên Nguyễn Trãi – Hải Dương – 2022) Cho hàm số \(y = f(x)\) có đồ thị \((C),f(x)\) có đạo hàm xác định và liên tục trên khoảng \((0; + \infty )\) thỏa mãn điều kiện \(f\prime (x) = \ln x \cdot {f^2}(x),\forall x \in (0; + \infty )\). Biết \(f(x) \ne 0,\forall x \in (0; + \infty )\) và \(f(e) = 2\). Viết phương trình tiếp tuyến với đồ thị \((C)\) tại điểm có hoành độ \(x = 1\).
NW277 NĂM 2022 THI THỬ TN12 SỞ NGHỆ AN PB12 – FILE WORD
NW277 NĂM 2022 THI THỬ TN12 SỞ NGHỆ AN PB12 ================ ĐỀ THI TOAN DỰA THEO PHẦN PHÁT TRIỂN THEO ĐỀ THAM KHẢO TOÁN CỦA BỘ GDDT 2022 CÓ LỜI GIẢI CHI TIẾT - FILE WORD ========== booktoan.com chia sẻ đến các bạn Bộ đề PHÁT TRIỂN THEO ĐÊ MÔN TOÁN năm 2022. Đề có đáp án chi tiết giúp các bạn đối chiếu, tham khảo để đánh giá năng lực bản thân. Chúc các em thành công và … [Đọc thêm...] vềNW277 NĂM 2022 THI THỬ TN12 SỞ NGHỆ AN PB12 – FILE WORD
(Chuyên Lê Quý Đôn – Điện Biên – 2022) Cho hàm số \(y = f\left( x \right) = a{x^3} + b{x^2} + cx + d,\,\,\left( {a,b,c,d \in \mathbb{R},\,\,a \ne 0} \right)\) có đồ thị \(\left( C \right)\). Biết rằng đồ thị \(\left( C \right)\) tiếp xúc với đường thẳng \(y = 4\) tại điểm có hoành độ âm và đồ thị của hàm số \(y = f’\left( x \right)\) cho bởi hình vẽ dưới đây. Tính thể tích vật thể tròn xoay được tạo thành khi quay hình phẳng \(H\) giới hạn bởi đồ thị \(\left( C \right)\) và trục hoành khi quay xung quanh trục \(Ox\).
Câu hỏi: (Chuyên Lê Quý Đôn - Điện Biên - 2022) Cho hàm số \(y = f\left( x \right) = a{x^3} + b{x^2} + cx + d,\,\,\left( {a,b,c,d \in \mathbb{R},\,\,a \ne 0} \right)\) có đồ thị \(\left( C \right)\). Biết rằng đồ thị \(\left( C \right)\) tiếp xúc với đường thẳng \(y = 4\) tại điểm có hoành độ âm và đồ thị của hàm số \(y = f'\left( x \right)\) cho bởi hình vẽ dưới đây. Tính … [Đọc thêm...] về(Chuyên Lê Quý Đôn – Điện Biên – 2022) Cho hàm số \(y = f\left( x \right) = a{x^3} + b{x^2} + cx + d,\,\,\left( {a,b,c,d \in \mathbb{R},\,\,a \ne 0} \right)\) có đồ thị \(\left( C \right)\). Biết rằng đồ thị \(\left( C \right)\) tiếp xúc với đường thẳng \(y = 4\) tại điểm có hoành độ âm và đồ thị của hàm số \(y = f’\left( x \right)\) cho bởi hình vẽ dưới đây. Tính thể tích vật thể tròn xoay được tạo thành khi quay hình phẳng \(H\) giới hạn bởi đồ thị \(\left( C \right)\) và trục hoành khi quay xung quanh trục \(Ox\).
(Sở Bắc Giang 2022) Cho hàm số \(y = f(x)\) có đạo hàm xác định trên \((0; + \infty )\) và thỏa mãn \(x\left( {f\prime (x) + x} \right) = (x + 1)f(x);f(1) = e + 1\). Biết rằng \(\int_0^1 f (x)dx = \frac{a}{b};\) trong đó \(a,b\) là những số nguyên dương và phân số \(\frac{a}{b}\) tối giản. Khi đó giá trị của \((2a + b)\) tương ứng bằng:
Câu hỏi:
(Sở Bắc Giang 2022) Cho hàm số \(y = f(x)\) có đạo hàm xác định trên \((0; + \infty )\) và thỏa mãn \(x\left( {f\prime (x) + x} \right) = (x + 1)f(x);f(1) = e + 1\). Biết rằng \(\int_0^1 f (x)dx = \frac{a}{b};\) trong đó \(a,b\) là những số nguyên dương và phân số \(\frac{a}{b}\) tối giản. Khi đó giá trị của \((2a + b)\) tương ứng bằng:
A. 4.
B. 5.
C. … [Đọc thêm...] về (Sở Bắc Giang 2022) Cho hàm số \(y = f(x)\) có đạo hàm xác định trên \((0; + \infty )\) và thỏa mãn \(x\left( {f\prime (x) + x} \right) = (x + 1)f(x);f(1) = e + 1\). Biết rằng \(\int_0^1 f (x)dx = \frac{a}{b};\) trong đó \(a,b\) là những số nguyên dương và phân số \(\frac{a}{b}\) tối giản. Khi đó giá trị của \((2a + b)\) tương ứng bằng:
