• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán

Bài tập Hàm số

Đề: Cho $f,g$ liên tục trên $[a,b]$ và $g(x_{0})\neq 0,x_{0}\in [a,b]$Chứng minh rằng:Nếu: $\begin{cases} 0

Ngày 11/03/2020 Thuộc chủ đề:Bài tập Hàm số Tag với:Hàm số liên tục

Đề bài: Cho $f,g$ liên tục trên $[a,b]$ và $g(x_{0})\neq 0,x_{0}\in [a,b]$Chứng minh rằng:Nếu: $\begin{cases} 0 Lời giải Đặt: $\begin{cases} \varphi=|g|^{-p},\psi=|fg|^{p}\\ \overline{p}=\frac{1}{p}>1,\overline{q}=\frac{\overline{p}}{\overline{p}-1}=\frac{\frac{1}{p}}{\frac{1}{p}-1}=\frac{1}{1-p}=-\frac{q}{p}>1\end{cases}$Ta chứng minh … [Đọc thêm...] vềĐề: Cho $f,g$ liên tục trên $[a,b]$ và $g(x_{0})\neq 0,x_{0}\in [a,b]$Chứng minh rằng:Nếu: $\begin{cases} 0

Đề: Cho hàm số:$y = \frac{{{x^2} – x – 1}}{{x – 3}}$$1$. Khảo sát sự biến thiên và vẽ đồ thị hàm số.$2$. Tìm $m$ để phương trình:${x^2} – (m + 1)x + 3m – 5 = 0$ có $2$ nghiệm dương.

Ngày 11/03/2020 Thuộc chủ đề:Bài tập Hàm số Tag với:Khảo sát và vẽ đồ thị hàm số

Đề bài: Cho hàm số:$y = \frac{{{x^2} - x - 1}}{{x - 3}}$$1$. Khảo sát sự biến thiên và vẽ đồ thị hàm số.$2$. Tìm $m$ để phương trình:${x^2} - (m + 1)x + 3m - 5 = 0$ có $2$ nghiệm dương. Lời giải $1.$ Xin dành cho bạn đọc. $\begin{array}{l}2.\,\,\,{x^2} - (m + 1)x + 3m - 5 = 0\\ \Leftrightarrow \frac{{{x^2} - x - 5}}{{x - 3}} = m\end{array}$Nghiệm phương trình là hoành độ … [Đọc thêm...] vềĐề: Cho hàm số:$y = \frac{{{x^2} – x – 1}}{{x – 3}}$$1$. Khảo sát sự biến thiên và vẽ đồ thị hàm số.$2$. Tìm $m$ để phương trình:${x^2} – (m + 1)x + 3m – 5 = 0$ có $2$ nghiệm dương.

Đề: Cho các đường: $y =  – \frac{{{x^3}}}{3} + 3x$        $(P)$  và  $y = m(x – 3)$        $(T)$1) Với giá trị nào của $m$ thì $(T)$ là tiếp tuyến của $(P)$?2) Chứng tỏ họ $(T)$ đi qua một điểm cố định $A$ thuộc $(P)$.3) Gọi $A, B, C$ là các giao điểm của $(P)$ và $(T)$. Hãy tìm m để $OB \bot OC$ ($O$ là gốc tọa độ)

Ngày 11/03/2020 Thuộc chủ đề:Bài tập Hàm số Tag với:Tiếp tuyến của đồ thị

Đề bài: Cho các đường: $y =  - \frac{{{x^3}}}{3} + 3x$        $(P)$  và  $y = m(x - 3)$        $(T)$1) Với giá trị nào của $m$ thì $(T)$ là tiếp tuyến của $(P)$?2) Chứng tỏ họ $(T)$ đi qua một điểm cố định $A$ thuộc $(P)$.3) Gọi $A, B, C$ là các giao điểm của $(P)$ và $(T)$. Hãy tìm m để $OB \bot OC$ ($O$ là gốc tọa độ) Lời giải $2)$ Dễ nhận thấy rằng $(T)$ luôn đi qua … [Đọc thêm...] vềĐề: Cho các đường: $y =  – \frac{{{x^3}}}{3} + 3x$        $(P)$  và  $y = m(x – 3)$        $(T)$1) Với giá trị nào của $m$ thì $(T)$ là tiếp tuyến của $(P)$?2) Chứng tỏ họ $(T)$ đi qua một điểm cố định $A$ thuộc $(P)$.3) Gọi $A, B, C$ là các giao điểm của $(P)$ và $(T)$. Hãy tìm m để $OB \bot OC$ ($O$ là gốc tọa độ)

Đề: $1$. Khảo sát và vẽ đồ thị hàm số: $y = \frac{x^2+ 4x + 5}{x + 2}$Tìm các điểm trên đồ thị có khoảng cách đến đường thẳng $y + 3x + 6 = 0$ là nhỏ nhất.$2$. Tính diện tích hình phẳng được giới hạn bởi các đường:       $y = \frac{1}{\sin 2x}\,;\,\,  y = \frac{1}{cos2x};x = \frac{\pi }{6};x = \frac{\pi }{3}$

Ngày 11/03/2020 Thuộc chủ đề:Bài tập Hàm số Tag với:Khảo sát và vẽ đồ thị hàm số

Đề bài: $1$. Khảo sát và vẽ đồ thị hàm số: $y = \frac{x^2+ 4x + 5}{x + 2}$Tìm các điểm trên đồ thị có khoảng cách đến đường thẳng $y + 3x + 6 = 0$ là nhỏ nhất.$2$. Tính diện tích hình phẳng được giới hạn bởi các đường:       $y = \frac{1}{\sin 2x}\,;\,\,  y = \frac{1}{cos2x};x = \frac{\pi }{6};x = \frac{\pi }{3}$ Lời giải $1.$ $y = \frac{x^2+ 4x + 5}{x + … [Đọc thêm...] vềĐề: $1$. Khảo sát và vẽ đồ thị hàm số: $y = \frac{x^2+ 4x + 5}{x + 2}$Tìm các điểm trên đồ thị có khoảng cách đến đường thẳng $y + 3x + 6 = 0$ là nhỏ nhất.$2$. Tính diện tích hình phẳng được giới hạn bởi các đường:       $y = \frac{1}{\sin 2x}\,;\,\,  y = \frac{1}{cos2x};x = \frac{\pi }{6};x = \frac{\pi }{3}$

Đề: Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số:   $f(x)=-x^2+2x+4$ trên đoạn $[2;4]$.

Ngày 11/03/2020 Thuộc chủ đề:Bài tập Hàm số Tag với:Giá trị lớn nhất - nhỏ nhất

Đề bài: Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số:   $f(x)=-x^2+2x+4$ trên đoạn $[2;4]$. Lời giải Đạo hàm $f^'(x)=-2x+2, f^'(x)=0\Leftrightarrow x=1\notin [2;4]$.Ta có: $f(2)=4, f(4)=-4.$Vậy, ta nhận được :-$\max  f(x)=\max (-4,4)=4$ đạt được khi $x=2$.-$\min f(x)=\min (-4,4)=-4$ đạt được khi $x=4$. … [Đọc thêm...] vềĐề: Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số:   $f(x)=-x^2+2x+4$ trên đoạn $[2;4]$.

Đề: $1.$ Khảo sát sự biến thiên và vẽ đồ thị của hàm số: $y = -x^3 + 3x^2 – 4$$2.$ Với mỗi giá trị của tham số $a$, tìm tọa độ của điểm cực đại và của điểm cực tiểu của đồ thị $C_a$ của hàm số $y = -x^3 + ax^2 – 4$$3.$ Xác định $a$ để mọi đường thẳng có phương trình $y = m$ với $-4 < m < 0$ cắt $C_a$ tại ba điểm phân biệt.

Ngày 11/03/2020 Thuộc chủ đề:Bài tập Hàm số Tag với:Cực trị của hàm số

Đề bài: $1.$ Khảo sát sự biến thiên và vẽ đồ thị của hàm số: $y = -x^3 + 3x^2 - 4$$2.$ Với mỗi giá trị của tham số $a$, tìm tọa độ của điểm cực đại và của điểm cực tiểu của đồ thị $C_a$ của hàm số $y = -x^3 + ax^2 - 4$$3.$ Xác định $a$ để mọi đường thẳng có phương trình $y = m$ với $-4 < m < 0$ cắt $C_a$ tại ba điểm phân biệt. Lời giải $1.$ Xin dành cho bạn đọc .$2.$ $y' … [Đọc thêm...] vềĐề: $1.$ Khảo sát sự biến thiên và vẽ đồ thị của hàm số: $y = -x^3 + 3x^2 – 4$$2.$ Với mỗi giá trị của tham số $a$, tìm tọa độ của điểm cực đại và của điểm cực tiểu của đồ thị $C_a$ của hàm số $y = -x^3 + ax^2 – 4$$3.$ Xác định $a$ để mọi đường thẳng có phương trình $y = m$ với $-4 < m < 0$ cắt $C_a$ tại ba điểm phân biệt.

Đề:  Cho họ đường cong  \(y = \frac{{ – {x^2} + mx – {m^2}}}{{x – m}}\left( {{C_m}} \right)\)$1$. Khảo sát sự biến thiên vẽ đồ thị đường cong khi $m = 1$$2$. Tìm $m$ để đường cong \(\left( {{C_m}} \right)\) có điểm cực đại và cực tiểu$3$. Tìm các điểm trên mặt phẳng tọa độ sao cho có đúng hai đường của họ \(\left( {{C_m}} \right)\) đi qua.

Ngày 11/03/2020 Thuộc chủ đề:Bài tập Hàm số Tag với:Điểm thuộc đồ thị

Đề bài:  Cho họ đường cong  \(y = \frac{{ - {x^2} + mx - {m^2}}}{{x - m}}\left( {{C_m}} \right)\)$1$. Khảo sát sự biến thiên vẽ đồ thị đường cong khi $m = 1$$2$. Tìm $m$ để đường cong \(\left( {{C_m}} \right)\) có điểm cực đại và cực tiểu$3$. Tìm các điểm trên mặt phẳng tọa độ sao cho có đúng hai đường của họ \(\left( {{C_m}} \right)\) đi qua. Lời giải $1$. Bạn đọc tự … [Đọc thêm...] vềĐề:  Cho họ đường cong  \(y = \frac{{ – {x^2} + mx – {m^2}}}{{x – m}}\left( {{C_m}} \right)\)$1$. Khảo sát sự biến thiên vẽ đồ thị đường cong khi $m = 1$$2$. Tìm $m$ để đường cong \(\left( {{C_m}} \right)\) có điểm cực đại và cực tiểu$3$. Tìm các điểm trên mặt phẳng tọa độ sao cho có đúng hai đường của họ \(\left( {{C_m}} \right)\) đi qua.

Đề: Cho hai hàm số:  ${y_1} = {x^2} – mx – 2$ và ${y_2} = \frac{{2 – mx}}{{x – 1}}$Chứng minh với $\forall m$ đồ thị của chúng luôn đi qua cùng một điểm cố định. Tìm $m$ để tại điểm cố định đó hai đồ thị tiếp xúc nhau, tìm phương trình tiếp tuyến chung

Ngày 11/03/2020 Thuộc chủ đề:Bài tập Hàm số Tag với:Tiếp tuyến của đồ thị

Đề bài: Cho hai hàm số:  ${y_1} = {x^2} - mx - 2$ và ${y_2} = \frac{{2 - mx}}{{x - 1}}$Chứng minh với $\forall m$ đồ thị của chúng luôn đi qua cùng một điểm cố định. Tìm $m$ để tại điểm cố định đó hai đồ thị tiếp xúc nhau, tìm phương trình tiếp tuyến chung Lời giải Điểm cố định chung là $(0, - 2)$.* Để tại đó hai đồ thị tiếp xúc nhau, tại đó hai đạo hàm phải bằng … [Đọc thêm...] vềĐề: Cho hai hàm số:  ${y_1} = {x^2} – mx – 2$ và ${y_2} = \frac{{2 – mx}}{{x – 1}}$Chứng minh với $\forall m$ đồ thị của chúng luôn đi qua cùng một điểm cố định. Tìm $m$ để tại điểm cố định đó hai đồ thị tiếp xúc nhau, tìm phương trình tiếp tuyến chung

Đề: Cho hàm số \(y = \frac{{{x^2} – x – 1}}{{x + 1}}\)$1$. Khảo sát hàm số đã cho$2$. Một đường thẳng thay đổi song song với đường thẳng \(y = \frac{1}{2}x\), cắt đồ thị của hàm số đã cho tại các điểm $M, N$. tìm quỹ tích trung điểm $I$ của $MN$.$3$. Biện luận theo tham số $m$ số nghiệm của phương trình sau \({x^2} – \left( {1 + m} \right)|x| – m – 1 = 0\)

Ngày 11/03/2020 Thuộc chủ đề:Bài tập Hàm số Tag với:Điểm thuộc đồ thị

Đề bài: Cho hàm số \(y = \frac{{{x^2} - x - 1}}{{x + 1}}\)$1$. Khảo sát hàm số đã cho$2$. Một đường thẳng thay đổi song song với đường thẳng \(y = \frac{1}{2}x\), cắt đồ thị của hàm số đã cho tại các điểm $M, N$. tìm quỹ tích trung điểm $I$ của $MN$.$3$. Biện luận theo tham số $m$ số nghiệm của phương trình sau \({x^2} - \left( {1 + m} \right)|x| - m - 1 = 0\) Lời … [Đọc thêm...] vềĐề: Cho hàm số \(y = \frac{{{x^2} – x – 1}}{{x + 1}}\)$1$. Khảo sát hàm số đã cho$2$. Một đường thẳng thay đổi song song với đường thẳng \(y = \frac{1}{2}x\), cắt đồ thị của hàm số đã cho tại các điểm $M, N$. tìm quỹ tích trung điểm $I$ của $MN$.$3$. Biện luận theo tham số $m$ số nghiệm của phương trình sau \({x^2} – \left( {1 + m} \right)|x| – m – 1 = 0\)

Đề: Chứng minh rằng hàm số \(y = \sin ^6x + cos^6x + 3\sin ^2x\cos^2x + 2001x\) có đạo hàm không phụ thuộc vào $x$.

Ngày 11/03/2020 Thuộc chủ đề:Bài tập Hàm số Tag với:Đạo hàm

Đề bài: Chứng minh rằng hàm số \(y = \sin ^6x + cos^6x + 3\sin ^2x\cos^2x + 2001x\) có đạo hàm không phụ thuộc vào $x$. Lời giải Ta có: \(y = {\sin ^6}x + c{\rm{o}}{{\rm{s}}^6}x + 3{\sin ^2}x{\cos ^2}x\left( {{{\sin }^2}x + c{\rm{o}}{{\rm{s}}^2}x} \right) + 2001x \)\(\begin{array}{l}  = {\left( {{{\sin }^2}x + c{\rm{o}}{{\rm{s}}^2}x} \right)^3} + 2001x = 1 + … [Đọc thêm...] vềĐề: Chứng minh rằng hàm số \(y = \sin ^6x + cos^6x + 3\sin ^2x\cos^2x + 2001x\) có đạo hàm không phụ thuộc vào $x$.

  • « Chuyển đến Trang trước
  • Trang 1
  • Interim pages omitted …
  • Trang 20
  • Trang 21
  • Trang 22
  • Trang 23
  • Trang 24
  • Interim pages omitted …
  • Trang 61
  • Chuyển đến Trang sau »

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.