• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán

Bài tập Hàm số

Đề: Giải hệ bất phương trình: $\left\{ \begin{array}{l}\log _2^2x – {\log _2}x^2 < 0\\\frac{x^3}{3} - 3x^2 + 5x + 9 > 0\end{array} \right.$

Ngày 11/03/2020 Thuộc chủ đề:Bài tập Hàm số Tag với:Ứng dụng hàm số vào giải toán

Đề bài: Giải hệ bất phương trình: $\left\{ \begin{array}{l}\log _2^2x - {\log _2}x^2 < 0\\\frac{x^3}{3} - 3x^2 + 5x + 9 > 0\end{array} \right.$ Lời giải ĐK :$x>0$$log_2^2x-log_2x^2$\Leftrightarrow  0Xét $f(x)=\frac{x^3}{3} -3x^2+5x+9$ thì $f^/(x)=x^2-6x+5$ $\Rightarrow  f(x)>0 \forall x\in(1,4)$ Do đóHệ $\begin{cases}log_2^2x-log_2x^20 \end{cases} \Leftrightarrow  1 … [Đọc thêm...] vềĐề: Giải hệ bất phương trình: $\left\{ \begin{array}{l}\log _2^2x – {\log _2}x^2 < 0\\\frac{x^3}{3} - 3x^2 + 5x + 9 > 0\end{array} \right.$

Đề: Cho hàm số $y=\frac{x^{2}-mx+m-1}{x-2}$.Tìm $m$ để đồ thị hàm số nhận điểm $I(2;3)$ làm tâm đối xứng.

Ngày 11/03/2020 Thuộc chủ đề:Bài tập Hàm số Tag với:Tâm đối xứng - trục đối xứng

Đề bài: Cho hàm số $y=\frac{x^{2}-mx+m-1}{x-2}$.Tìm $m$ để đồ thị hàm số nhận điểm $I(2;3)$ làm tâm đối xứng. Lời giải Điểm $I(2;3)$ là tâm đối xứng của đồ thị khi với phép biến đổi tọa độ:$\begin{cases} X=x-2 \\ Y=y-3\end{cases} \Leftrightarrow \begin{cases} x=X+2 \\ y=Y+3\end{cases}$Hàm số sau là hàm lẻ:$Y+3=\frac{(X+2)^{2}-m(X+2)+m-1}{(X+2)-2}$Xét hàm … [Đọc thêm...] vềĐề: Cho hàm số $y=\frac{x^{2}-mx+m-1}{x-2}$.Tìm $m$ để đồ thị hàm số nhận điểm $I(2;3)$ làm tâm đối xứng.

Đề: Tìm:a) $GTNN:A=4+a^{2}b^{4}+a^{4}b^{2}-3 a^{2}b^{2} $b) $GTNN: B=x+y$ với $x,y>0$ và $\frac{2}{x}+\frac{3}{y}=6 $

Ngày 11/03/2020 Thuộc chủ đề:Bài tập Hàm số Tag với:Giá trị lớn nhất - nhỏ nhất

Đề bài: Tìm:a) $GTNN:A=4+a^{2}b^{4}+a^{4}b^{2}-3 a^{2}b^{2} $b) $GTNN: B=x+y$ với $x,y>0$ và $\frac{2}{x}+\frac{3}{y}=6 $ Lời giải Thêm lời giải chi tiết … [Đọc thêm...] vềĐề: Tìm:a) $GTNN:A=4+a^{2}b^{4}+a^{4}b^{2}-3 a^{2}b^{2} $b) $GTNN: B=x+y$ với $x,y>0$ và $\frac{2}{x}+\frac{3}{y}=6 $

Đề:  Xét hàm số với tham số $a:$ \(y = 2{x^3} + ax^2 – 12x – 13\) 1. Với những giá trị nào của $a$ thì đồ thị của hàm số có điểm cực đại và điểm cực tiểu và các điểm này cách đều trực tung?2. Khảo sát sự biến thiên và vẽ đồ thị của hàm số ứng với $a = 3.$

Ngày 10/03/2020 Thuộc chủ đề:Bài tập Hàm số Tag với:Khảo sát và vẽ đồ thị hàm số

Đề bài:  Xét hàm số với tham số $a:$ \(y = 2{x^3} + ax^2 - 12x - 13\) 1. Với những giá trị nào của $a$ thì đồ thị của hàm số có điểm cực đại và điểm cực tiểu và các điểm này cách đều trực tung?2. Khảo sát sự biến thiên và vẽ đồ thị của hàm số ứng với $a = 3.$ Lời giải $1$.Ta có \(y' = 6{x^2} + 2ax - 12\) luôn có hai nghiệm phân biệt  \({x_{1,2}} = \frac{{ - a \pm \sqrt … [Đọc thêm...] vềĐề:  Xét hàm số với tham số $a:$ \(y = 2{x^3} + ax^2 – 12x – 13\) 1. Với những giá trị nào của $a$ thì đồ thị của hàm số có điểm cực đại và điểm cực tiểu và các điểm này cách đều trực tung?2. Khảo sát sự biến thiên và vẽ đồ thị của hàm số ứng với $a = 3.$

Đề: Cho hàm số: $y = \frac{x^2 + mx – 2m – 4}{x + 2}\,\,\,(1)$ ($m$ là tham số)$1.$ Tìm các điểm mà đồ thị hàm số ($1$) đi qua với mọi giá trị của $m.$$2.$ Xác định $m$ để hàm số ($1$) có cực đại và cực tiểu. Tìm quỹ tích của điểm cực đại của đồ thị khi $m$ thay đổi.$3.$ Khảo sát sự biến thiên và vẽ đồ thị ($C$) của hàm số ($1$) ứng với $m = -1$.

Ngày 10/03/2020 Thuộc chủ đề:Bài tập Hàm số Tag với:Cực trị của hàm số

Đề bài: Cho hàm số: $y = \frac{x^2 + mx - 2m - 4}{x + 2}\,\,\,(1)$ ($m$ là tham số)$1.$ Tìm các điểm mà đồ thị hàm số ($1$) đi qua với mọi giá trị của $m.$$2.$ Xác định $m$ để hàm số ($1$) có cực đại và cực tiểu. Tìm quỹ tích của điểm cực đại của đồ thị khi $m$ thay đổi.$3.$ Khảo sát sự biến thiên và vẽ đồ thị ($C$) của hàm số ($1$) ứng với $m = -1$. Lời giải $1.$ ĐK: $x … [Đọc thêm...] vềĐề: Cho hàm số: $y = \frac{x^2 + mx – 2m – 4}{x + 2}\,\,\,(1)$ ($m$ là tham số)$1.$ Tìm các điểm mà đồ thị hàm số ($1$) đi qua với mọi giá trị của $m.$$2.$ Xác định $m$ để hàm số ($1$) có cực đại và cực tiểu. Tìm quỹ tích của điểm cực đại của đồ thị khi $m$ thay đổi.$3.$ Khảo sát sự biến thiên và vẽ đồ thị ($C$) của hàm số ($1$) ứng với $m = -1$.

Đề: Cho hàm số $y = f(x) = {x^4} + 2m{x^2} + m$, m là tham số$1$. Khảo sát sự biến thiên và vẽ đồ thị hàm số khi $m =-1.$$2$. Tìm tất cả các giá trị của $m$ để hàm số $f(x) > 0$ với mọi $x$.Với các giá trị $m$ tìm được ở trên, chứng minh rằng hàm số :$F(x) = f(x) + f'(x) + f''(x) + f'''(x) + {f^{(4)}}x > 0  \forall x$$(f^{(4)} (x$) là kí hiệu đạo hàm cấp $4$ của hàm số $f(x)$ tại điểm $x)$

Ngày 10/03/2020 Thuộc chủ đề:Bài tập Hàm số Tag với:Khảo sát và vẽ đồ thị hàm số

Đề bài: Cho hàm số $y = f(x) = {x^4} + 2m{x^2} + m$, m là tham số$1$. Khảo sát sự biến thiên và vẽ đồ thị hàm số khi $m =-1.$$2$. Tìm tất cả các giá trị của $m$ để hàm số $f(x) > 0$ với mọi $x$.Với các giá trị $m$ tìm được ở trên, chứng minh rằng hàm số :$F(x) = f(x) + f'(x) + f''(x) + f'''(x) + {f^{(4)}}x > 0  \forall x$$(f^{(4)} (x$) là kí hiệu … [Đọc thêm...] vềĐề: Cho hàm số $y = f(x) = {x^4} + 2m{x^2} + m$, m là tham số$1$. Khảo sát sự biến thiên và vẽ đồ thị hàm số khi $m =-1.$$2$. Tìm tất cả các giá trị của $m$ để hàm số $f(x) > 0$ với mọi $x$.Với các giá trị $m$ tìm được ở trên, chứng minh rằng hàm số :$F(x) = f(x) + f'(x) + f''(x) + f'''(x) + {f^{(4)}}x > 0  \forall x$$(f^{(4)} (x$) là kí hiệu đạo hàm cấp $4$ của hàm số $f(x)$ tại điểm $x)$

Đề: Cho hàm số:$y = \frac{ – 2x + 1}{x + 2}\,$$1$. Khảo sát sự biến thiên và vẽ đồ thị của hàm số. $2$. Viết phương trình tiếp tuyến với đồ thị hàm số song song với đường thẳng $y = -x$

Ngày 10/03/2020 Thuộc chủ đề:Bài tập Hàm số Tag với:Tiếp tuyến của đồ thị

Đề bài: Cho hàm số:$y = \frac{ - 2x + 1}{x + 2}\,$$1$. Khảo sát sự biến thiên và vẽ đồ thị của hàm số. $2$. Viết phương trình tiếp tuyến với đồ thị hàm số song song với đường thẳng $y = -x$ Lời giải $1.$ Xin dành cho bạn đọc. $2.$ Hoành độ tiếp điểm các tiếp tuyến song song với $y=-x$ là nghiệm của phương trình $f^/(x)=\frac{-3}{(x+1)^2} =-1\Leftrightarrow  x=-1\pm … [Đọc thêm...] vềĐề: Cho hàm số:$y = \frac{ – 2x + 1}{x + 2}\,$$1$. Khảo sát sự biến thiên và vẽ đồ thị của hàm số. $2$. Viết phương trình tiếp tuyến với đồ thị hàm số song song với đường thẳng $y = -x$

Đề: Cho elip   $(E):   \frac{x^2}{a^2}+\frac{y^2}{b^2}=1  $  với  $F_1(-c;0)$. Tìm  $M$  sao cho  $MF_1$  ngắn nhất.

Ngày 10/03/2020 Thuộc chủ đề:Bài tập Hàm số Tag với:Giá trị lớn nhất - nhỏ nhất

Đề bài: Cho elip   $(E):   \frac{x^2}{a^2}+\frac{y^2}{b^2}=1  $  với  $F_1(-c;0)$. Tìm  $M$  sao cho  $MF_1$  ngắn nhất. Lời giải Ta có:   $MF_1=a+ex_M$ Mà   $M \in (E)    \Rightarrow     -a \leq x_M      \Rightarrow      -ea  \leq  ex_M     \Rightarrow    a-ea \leq  a+ex_M=MF_1$Do đó   $MF_1$  ngắn nhất    $\Leftrightarrow  MF_1=a-\frac{c}{a}a=a-c      \Leftrightarrow     … [Đọc thêm...] vềĐề: Cho elip   $(E):   \frac{x^2}{a^2}+\frac{y^2}{b^2}=1  $  với  $F_1(-c;0)$. Tìm  $M$  sao cho  $MF_1$  ngắn nhất.

Đề: Cho hàm số   $y=f(x)=2x^3-3(2m+1)x^2+6m(m+1)x+1    (1)$$a.$ Tìm quỹ tích điểm uốn.$b.$ Tìm quĩ tích điểm cực đại$c.$ Tìm quĩ tích trung điểm đoạn nối điểm cực đại và cực tiểu của đồ thị.

Ngày 10/03/2020 Thuộc chủ đề:Bài tập Hàm số Tag với:Điểm thuộc đồ thị

Đề bài: Cho hàm số   $y=f(x)=2x^3-3(2m+1)x^2+6m(m+1)x+1    (1)$$a.$ Tìm quỹ tích điểm uốn.$b.$ Tìm quĩ tích điểm cực đại$c.$ Tìm quĩ tích trung điểm đoạn nối điểm cực đại và cực tiểu của đồ thị. Lời giải a.  $ {\rm{y' }} = {\rm{ 6}}{{\rm{x}}^{\rm{2}}}{\rm{ -  6}}\left( {{\rm{2m }} + {\rm{ 1}}} \right){\rm{ x }} + {\rm{ 6m}}\left( {{\rm{m }} + {\rm{ 1}}} \right) $ $ … [Đọc thêm...] vềĐề: Cho hàm số   $y=f(x)=2x^3-3(2m+1)x^2+6m(m+1)x+1    (1)$$a.$ Tìm quỹ tích điểm uốn.$b.$ Tìm quĩ tích điểm cực đại$c.$ Tìm quĩ tích trung điểm đoạn nối điểm cực đại và cực tiểu của đồ thị.

Đề: Cho hàm số: $y = \frac{2x^2 + 3x + 1}{x – 1}\,$$1$. Khảo sát và vẽ đồ thị hàm số trên.$2$. Một lớp học có $20$ học sinh, trong đó có $2$ cán bộ lớp. Hỏi có bao nhiêu cách cử $3$ người đi dự hội nghị Hội sinh viên của trường sao cho trong $3$ người có ít nhất một cán bộ lớp.

Ngày 10/03/2020 Thuộc chủ đề:Bài tập Hàm số Tag với:Khảo sát và vẽ đồ thị hàm số

Đề bài: Cho hàm số: $y = \frac{2x^2 + 3x + 1}{x - 1}\,$$1$. Khảo sát và vẽ đồ thị hàm số trên.$2$. Một lớp học có $20$ học sinh, trong đó có $2$ cán bộ lớp. Hỏi có bao nhiêu cách cử $3$ người đi dự hội nghị Hội sinh viên của trường sao cho trong $3$ người có ít nhất một cán bộ lớp. Lời giải $1.$ $y= \frac{2x^2+3x+1}{x-1}=2x+5+\frac{6}{x-1}  $* TXĐ: $D=R \setminus  \left\{ … [Đọc thêm...] vềĐề: Cho hàm số: $y = \frac{2x^2 + 3x + 1}{x – 1}\,$$1$. Khảo sát và vẽ đồ thị hàm số trên.$2$. Một lớp học có $20$ học sinh, trong đó có $2$ cán bộ lớp. Hỏi có bao nhiêu cách cử $3$ người đi dự hội nghị Hội sinh viên của trường sao cho trong $3$ người có ít nhất một cán bộ lớp.

  • « Chuyển đến Trang trước
  • Trang 1
  • Interim pages omitted …
  • Trang 21
  • Trang 22
  • Trang 23
  • Trang 24
  • Trang 25
  • Interim pages omitted …
  • Trang 61
  • Chuyển đến Trang sau »

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.